ON THE STABILITY OF QUADRATIC FUNCTIONAL EQUATIONS IN PARTIALLY ORDERED BANACH SPACES : A PARTIALLY ORDERED FIXED POINT APPROACH

被引:0
作者
Ramezani, Maryam [1 ]
Baghani, Hamid [2 ]
机构
[1] Univ Bojnord, Dept Math, Bojnord, Iran
[2] Univ Sinstan & Baluchestan, Dept Math, Zahedan, Iran
来源
JORDAN JOURNAL OF MATHEMATICS AND STATISTICS | 2016年 / 9卷 / 04期
关键词
alternative fixed point; generalized metric space; partial order; stability;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Using partially ordered fixed point method, we investigate the Hyers-Ulam-Rassias stability and superstability of quadratic functional equations on Banach spaces endowed a partial order.
引用
收藏
页码:259 / 270
页数:12
相关论文
共 15 条
[1]  
Aoki T., 1950, J MATH SOC JPN, V2, P64, DOI [10.2969/jmsj/00210064, DOI 10.2969/JMSJ/00210064]
[2]  
Borelli C., 1993, INT J MATH MATH SCI, V18, P229
[3]  
Chang IS, 2002, J INEQUAL PURE APPL, V3, pArt
[4]  
Cholewa P.W., 1984, AEQUATIONES MATH, V27, P76
[5]   ON THE STABILITY OF THE QUADRATIC MAPPING IN NORMED SPACES [J].
CZERWIK, S .
ABHANDLUNGEN AUS DEM MATHEMATISCHEN SEMINAR DER UNIVERSITAT HAMBURG, 1992, 62 :59-64
[6]  
Czerwik S., 2002, FUNCTIONAL EQUATIONS
[7]   A new type fixed point theorem for a contraction on partially ordered generalized complete metric spaces with applications [J].
Gordji, Madjid Eshaghi ;
Ramezani, Maryam ;
Sajadian, Farhad ;
Cho, Yeol Je ;
Park, Choonkil .
FIXED POINT THEORY AND APPLICATIONS, 2014,
[8]  
Hyers D. H., 1998, STABILITY FUNCTIONAL
[9]   On the stability of the linear functional equation [J].
Hyers, DH .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1941, 27 :222-224
[10]   On a functional equation of trigonometric type [J].
Jung, Soon-Mo ;
Rassias, Michael Th. ;
Mortici, Cristinel .
APPLIED MATHEMATICS AND COMPUTATION, 2015, 252 :294-303