NUMERICAL VERIFICATION OF EXISTENCE AND INCLUSION OF SOLUTIONS FOR NONLINEAR OPERATOR-EQUATIONS

被引:34
作者
OISHI, S [1 ]
机构
[1] WASEDA UNIV,SCH SCI & ENGN,DEPT INFORMAT & COMP SCI,TOKYO 169,JAPAN
关键词
SELF-VALIDATING NUMERICS; COMPUTER-ASSISTED EXISTENCE PROOF; NEWTONS METHOD; URABE-GALERKINS METHOD; DUFFINGS EQUATION;
D O I
10.1016/0377-0427(94)00090-N
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Abstract nonlinear operator equations of the type f(u) = Lu + Nu = 0, u is an element of D(L) are considered, where L is a closed linear operator from a Banach space X to another Banach space Y and N a nonlinear operator from X to Y. A method is presented for numerical verification and inclusion of solutions for the equations. As an example, the existence of a periodic solution is proved for the Duffing equation.
引用
收藏
页码:171 / 185
页数:15
相关论文
共 17 条
[1]  
Bouc R, 1972, INT J NONLIN MECH, DOI [10.1016/0020-7462(72)90011-X, DOI 10.1016/0020-7462(72)90011-X]
[2]  
Cesari L., 1963, CONTRIB DIFFEREN EQU, V1, P149
[3]  
Collatz L., 1966, FUNCTIONAL ANAL NUME
[4]  
Iri M., 1984, JAPAN J APPLIED MATH, V1, P223
[5]  
Kantorovich L. V., 1948, USP MAT NAUK, P89
[6]  
KAUCHER EW, 1984, SELF VALIDATING NUME
[7]   A POSTERIORI ERROR-BOUNDS FOR 2-POINT BOUNDARY-VALUE-PROBLEMS [J].
KEDEM, G .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1981, 18 (03) :431-448
[8]  
MARTI JT, 1983, SIAM J NUMER ANAL, V20, P1239, DOI 10.1137/0720094
[9]  
NAKAO MT, 1988, JAPAN J APPL MATH, V5, P313, DOI DOI 10.1007/BF03167877
[10]   COMPUTER-ASSISTED EXISTENCE PROOFS FOR 2-POINT BOUNDARY-VALUE-PROBLEMS [J].
PLUM, M .
COMPUTING, 1991, 46 (01) :19-34