THE DIMENSION OF PROJECTIVE GEOMETRY CODES

被引:6
作者
CECCHERINI, PV
HIRSCHFELD, JWP
机构
[1] UNIV SUSSEX,SCH MATH & PHYS SCI,BRIGHTON BN1 9QH,E SUSSEX,ENGLAND
[2] UNIV ROME LA SAPIENZA,DIPARTIMENTO MATEMAT,I-00185 ROME,ITALY
关键词
D O I
10.1016/0012-365X(92)90538-Q
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The aim of this paper is to make sense of Hamada's formula for the dimension of the code generated by the incidence matrix of points and subspaces of a given dimension in a finite projective space. The known results are surveyed and a successful guess is made for the dimension of the dual line code when the field has prime order. Van Lint's proof of the equivalence of the two formulas is given. A further guess on the meaning of the formula is also made and a simple proof due to Glynn is given.
引用
收藏
页码:117 / 126
页数:10
相关论文
共 14 条
  • [1] BETH T, IN PRESS DES CODES C
  • [2] ON A CLASS OF MAJORITY-LOGIC DECODABLE CYCLIC CODES
    GOETHALS, JM
    DELSARTE, P
    [J]. IEEE TRANSACTIONS ON INFORMATION THEORY, 1968, 14 (02) : 182 - +
  • [3] Hamada N., 1973, HIROSHIMA MATH J, V3, P153
  • [4] HAMADA N., 1968, J SCI HIROSHIMA U A1, V32, P381
  • [5] SETS OF EVEN TYPE IN PG(3, 4), ALIAS THE BINARY (85, 24) PROJECTIVE GEOMETRY CODE
    HIRSCHFELD, JWP
    HUBAUT, X
    [J]. JOURNAL OF COMBINATORIAL THEORY SERIES A, 1980, 29 (01) : 101 - 112
  • [6] Hirschfeld JWP, 1998, PROJECTIVE GEOMETRIE, V2nd
  • [7] HIRSCHFIELD JWP, 1985, FINITE PROJECTIVE SP
  • [8] ON P-RANK OF DESIGN MATRIX OF A DIFFERENCE SET
    MACWILLIAMS, FJ
    MANN, HB
    [J]. INFORMATION AND CONTROL, 1968, 12 (5-6): : 474 - +
  • [9] OTT U, 1984, SEM GEOM COMBIN, V50
  • [10] Peterson William Wesley, 1972, ERROR CORRECTING COD