机构:
Vladimir State Humanitarian Univ, Pr Stroitelei 11, Vladimir 600024, RussiaVladimir State Humanitarian Univ, Pr Stroitelei 11, Vladimir 600024, Russia
Krasil'shchikov, V. V.
[1
]
Shutov, A. V.
论文数: 0引用数: 0
h-index: 0
机构:
Vladimir State Humanitarian Univ, Pr Stroitelei 11, Vladimir 600024, RussiaVladimir State Humanitarian Univ, Pr Stroitelei 11, Vladimir 600024, Russia
Shutov, A. V.
[1
]
Zhuravlev, V. G.
论文数: 0引用数: 0
h-index: 0
机构:
Vladimir State Humanitarian Univ, Pr Stroitelei 11, Vladimir 600024, RussiaVladimir State Humanitarian Univ, Pr Stroitelei 11, Vladimir 600024, Russia
Zhuravlev, V. G.
[1
]
机构:
[1] Vladimir State Humanitarian Univ, Pr Stroitelei 11, Vladimir 600024, Russia
In this paper we consider one-dimensional quasiperiodic tilings based on the use of irrational rotations of a circle. We completely describe a wide class of progressions included in the mentioned tilings.