LORENTZIAN MANIFOLDS WITH NONPOSITIVE CURVATURE

被引:0
作者
FLAHERTY, FJ [1 ]
机构
[1] OREGON STATE UNIV,CORVALLIS,OR 97331
来源
NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY | 1974年 / 21卷 / 01期
关键词
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
引用
收藏
页码:A207 / A208
页数:2
相关论文
共 50 条
[41]   Einstein 4-manifolds and nonpositive isotropic curvature [J].
A. Brasil ;
E. Costa ;
F. Vitório .
Archiv der Mathematik, 2017, 109 :293-300
[42]   On the Martin Boundary of Rank 1 Manifolds with Nonpositive Curvature [J].
Ran Ji .
The Journal of Geometric Analysis, 2019, 29 :2805-2822
[43]   Biharmonic map heat flow into manifolds of nonpositive curvature [J].
Lamm, T .
CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2005, 22 (04) :421-445
[44]   3-MANIFOLDS WITH(OUT) METRICS OF NONPOSITIVE CURVATURE [J].
LEEB, B .
INVENTIONES MATHEMATICAE, 1995, 122 (02) :277-289
[45]   ISOMETRY GROUPS OF SIMPLY CONNECTED MANIFOLDS OF NONPOSITIVE CURVATURE [J].
CHEN, SS ;
EBERLEIN, P .
ILLINOIS JOURNAL OF MATHEMATICS, 1980, 24 (01) :73-103
[46]   Einstein 4-manifolds and nonpositive isotropic curvature [J].
Brasil, A., Jr. ;
Costa, E. ;
Vitorio, F. .
ARCHIV DER MATHEMATIK, 2017, 109 (03) :293-300
[47]   THE ISOMETRY GROUPS OF MANIFOLDS OF NONPOSITIVE CURVATURE WITH FINITE VOLUME [J].
YAMAGUCHI, T .
MATHEMATISCHE ZEITSCHRIFT, 1985, 189 (02) :185-192
[48]   HESSIAN MANIFOLDS OF NONPOSITIVE CONSTANT HESSIAN SECTIONAL CURVATURE [J].
Furuhata, Hitoshi ;
Kurose, Takashi .
TOHOKU MATHEMATICAL JOURNAL, 2013, 65 (01) :31-42
[49]   Bounded harmonic functions on Riemannian manifolds of nonpositive curvature [J].
Ding, Qing .
MATHEMATISCHE ANNALEN, 2012, 353 (03) :803-826
[50]   Isometric embedding of Kahler manifolds with nonpositive sectional curvature [J].
Zheng, FY .
MATHEMATISCHE ANNALEN, 1996, 304 (04) :769-784