LORENTZIAN MANIFOLDS WITH NONPOSITIVE CURVATURE

被引:0
作者
FLAHERTY, FJ [1 ]
机构
[1] OREGON STATE UNIV,CORVALLIS,OR 97331
来源
NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY | 1974年 / 21卷 / 01期
关键词
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
引用
收藏
页码:A207 / A208
页数:2
相关论文
共 50 条
[31]   Examples of 4-manifolds with almost nonpositive curvature [J].
Galaz-Garcia, Fernando .
DIFFERENTIAL GEOMETRY AND ITS APPLICATIONS, 2008, 26 (06) :697-703
[33]   Helly's intersection theorem on manifolds of nonpositive curvature [J].
Ledyaev, Yuri S. ;
Treiman, Jay S. ;
Zhu, Qiji J. .
JOURNAL OF CONVEX ANALYSIS, 2006, 13 (3-4) :785-798
[34]   Finsler manifolds with nonpositive flag curvature and constant S-curvature [J].
Zhongmin Shen .
Mathematische Zeitschrift, 2005, 249 :625-639
[35]   Bounded harmonic functions on Riemannian manifolds of nonpositive curvature [J].
Qing Ding .
Mathematische Annalen, 2012, 353 :803-826
[36]   ANALYTIC MANIFOLDS OF NONPOSITIVE CURVATURE WITH HIGHER RANK SUBSPACES [J].
SCHROEDER, V .
ARCHIV DER MATHEMATIK, 1991, 56 (01) :81-85
[37]   On the Martin Boundary of Rank 1 Manifolds with Nonpositive Curvature [J].
Ji, Ran .
JOURNAL OF GEOMETRIC ANALYSIS, 2019, 29 (03) :2805-2822
[38]   Finsler manifolds with nonpositive flag curvature and constant S-curvature [J].
Shen, ZM .
MATHEMATISCHE ZEITSCHRIFT, 2005, 249 (03) :625-639
[39]   Einstein 4-manifolds and nonpositive isotropic curvature [J].
A. Brasil ;
E. Costa ;
F. Vitório .
Archiv der Mathematik, 2017, 109 :293-300
[40]   PRESCRIBING CURVATURE ON MANIFOLDS WITH NONPOSITIVE YAMABE INVARIANT AND SINGULARITIES [J].
TANG, JJ .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 1994, 19 (5-6) :701-718