LORENTZIAN MANIFOLDS WITH NONPOSITIVE CURVATURE

被引:0
作者
FLAHERTY, FJ [1 ]
机构
[1] OREGON STATE UNIV,CORVALLIS,OR 97331
来源
NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY | 1974年 / 21卷 / 01期
关键词
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
引用
收藏
页码:A207 / A208
页数:2
相关论文
共 50 条
[21]   Fast diffusion flow on manifolds of nonpositive curvature [J].
Matteo Bonforte ;
Gabriele Grillo ;
Juan Luis Vazquez .
Journal of Evolution Equations, 2008, 8 :99-128
[22]   Distorted Plane Waves on Manifolds of Nonpositive Curvature [J].
Maxime Ingremeau .
Communications in Mathematical Physics, 2017, 350 :845-891
[23]   STRUCTURE OF MANIFOLDS OF NONPOSITIVE CURVATURE .1. [J].
BALLMANN, W ;
BRIN, M ;
EBERLEIN, P .
ANNALS OF MATHEMATICS, 1985, 122 (01) :171-203
[24]   Compact Kahler manifolds with nonpositive bisectional curvature [J].
Wu, HH ;
Zheng, FY .
JOURNAL OF DIFFERENTIAL GEOMETRY, 2002, 61 (02) :263-287
[25]   Compact Kahler manifolds with nonpositive bisectional curvature [J].
Liu, Gang .
GEOMETRIC AND FUNCTIONAL ANALYSIS, 2014, 24 (05) :1591-1607
[26]   RANK RIGIDITY FOR FOLIATIONS BY MANIFOLDS OF NONPOSITIVE CURVATURE [J].
ADAMS, S .
DIFFERENTIAL GEOMETRY AND ITS APPLICATIONS, 1993, 3 (01) :47-70
[28]   Lorentzian manifolds and scalar curvature invariants [J].
Coley, Alan ;
Hervik, Sigbjorn ;
Pelavas, Nicos .
CLASSICAL AND QUANTUM GRAVITY, 2010, 27 (10)
[29]   The scalar curvature flow in Lorentzian manifolds [J].
Enz, Christian .
ADVANCES IN CALCULUS OF VARIATIONS, 2008, 1 (03) :323-343
[30]   Completeness of Lorentzian manifolds of constant curvature [J].
Klingler, B .
MATHEMATISCHE ANNALEN, 1996, 306 (02) :353-370