A Practical and Robust Execution Time-Frame Procedure for the Multi-Mode Resource-Constrained Project Scheduling Problem with Minimal and Maximal Time Lags

被引:3
|
作者
Chen, Angela Hsiang-Ling [1 ]
Liang, Yun-Chia [2 ,3 ]
Padilla, Jose David [2 ]
机构
[1] Nanya Inst Technol, Dept Mkt & Distribut Management, Taoyuan 32091, Taiwan
[2] Yuan Ze Univ, Dept Ind Engn & Management, Taoyuan 32003, Taiwan
[3] Yuan Ze Univ, Innovat Ctr Big Data & Digital Convergence, Taoyuan 32003, Taiwan
来源
ALGORITHMS | 2016年 / 9卷 / 04期
关键词
MRCPSP/max; discrete Artificial Bee Colony (ABC); entropy; robust scheduling;
D O I
10.3390/a9040063
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Modeling and optimizing organizational processes, such as the one represented by the Resource-Constrained Project Scheduling Problem (RCPSP), improve outcomes. Based on assumptions and simplification, this model tackles the allocation of resources so that organizations can continue to generate profits and reinvest in future growth. Nonetheless, despite all of the research dedicated to solving the RCPSP and its multi-mode variations, there is no standardized procedure that can guide project management practitioners in their scheduling tasks. This is mainly because many of the proposed approaches are either based on unrealistic/oversimplified scenarios or they propose solution procedures not easily applicable or even feasible in real-life situations. In this study, we solve a more true-to-life and complex model, Multimode RCPSP with minimal and maximal time lags (MRCPSP/max). The complexity of the model solved is presented, and the practicality of the proposed approach is justified depending on only information that is available for every project regardless of its industrial context. The results confirm that it is possible to determine a robust makespan and to calculate an execution time-frame with gaps lower than 11% between their lower and upper bounds. In addition, in many instances, the solved lower bound obtained was equal to the best-known optimum.
引用
收藏
页数:19
相关论文
共 50 条
  • [1] A mathematical model for the multi-mode resource-constrained project scheduling problem with mode dependent time lags
    Sabzehparvar, Majid
    Seyed-Hosseini, S. Mohammad
    JOURNAL OF SUPERCOMPUTING, 2008, 44 (03): : 257 - 273
  • [2] A mathematical model for the multi-mode resource-constrained project scheduling problem with mode dependent time lags
    Majid Sabzehparvar
    S. Mohammad Seyed-Hosseini
    The Journal of Supercomputing, 2008, 44 : 257 - 273
  • [3] A branch-and-bound procedure for the multi-mode resource-constrained project scheduling problem with minimum and maximum time lags
    Heilmann, R
    EUROPEAN JOURNAL OF OPERATIONAL RESEARCH, 2003, 144 (02) : 348 - 365
  • [4] Heuristics and applications for resource-constrained project scheduling with minimal and maximal time lags
    Corner, JL
    Foulds, LR
    Neumann, K
    INES'97 : 1997 IEEE INTERNATIONAL CONFERENCE ON INTELLIGENT ENGINEERING SYSTEMS, PROCEEDINGS, 1997, : 403 - 408
  • [5] A robust optimization approach for the multi-mode resource-constrained project scheduling problem
    Balouka, Noemie
    Cohen, Izack
    EUROPEAN JOURNAL OF OPERATIONAL RESEARCH, 2021, 291 (02) : 457 - 470
  • [6] The Multi-Mode Resource-Constrained Multi-Project Scheduling Problem
    Wauters, Tony
    Kinable, Joris
    Smet, Pieter
    Vancroonenburg, Wim
    Vanden Berghe, Greet
    Verstichel, Jannes
    JOURNAL OF SCHEDULING, 2016, 19 (03) : 271 - 283
  • [7] A Continuous-Time MILP Formulation for the Multi-Mode Resource-Constrained Project Scheduling Problem
    Gnagi, M.
    Rihm, T.
    Trautmann, N.
    2018 IEEE INTERNATIONAL CONFERENCE ON INDUSTRIAL ENGINEERING AND ENGINEERING MANAGEMENT (IEEE IEEM), 2018, : 452 - 456
  • [8] Optimizing time, cost and quality in multi-mode resource-constrained project scheduling
    Kannimuthu, Marimuthu
    Raphael, Benny
    Palaneeswaran, Ekambaram
    Kuppuswamy, Ananthanarayanan
    BUILT ENVIRONMENT PROJECT AND ASSET MANAGEMENT, 2019, 9 (01) : 44 - 63
  • [9] Multi-mode resource-constrained project scheduling problem with alternative project structures
    Tao, Sha
    Dong, Zhijie Sasha
    COMPUTERS & INDUSTRIAL ENGINEERING, 2018, 125 : 333 - 347
  • [10] Modeling of the flexible resource-constrained multi-mode project scheduling problem
    School of Management, Wuhan University of Technology, Wuhan 430070, China
    不详
    Wuhan Ligong Daxue Xuebao, 2008, 11 (176-179+188):