TRANSPORT-PROPERTIES, LYAPUNOV EXPONENTS, AND ENTROPY PER UNIT TIME

被引:247
作者
GASPARD, P
NICOLIS, G
机构
[1] Faculté des Sciences, Université Libre de Bruxelles, Campus Plaine, B-1050 Brussels
关键词
D O I
10.1103/PhysRevLett.65.1693
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
For dynamical systems of large spatial extension giving rise to transport phenomena, like the Lorentz gas, we establish a relationship between the transport coefficient and the difference between the positive Lyapunov exponent and the Kolmogorov-Sinai entropy per unit time, characterizing the fractal and chaotic repeller of trapped trajectories. Consequences for nonequilibrium statistical mechanics are discussed. © 1990 The American Physical Society.
引用
收藏
页码:1693 / 1696
页数:4
相关论文
共 51 条
[1]  
[Anonymous], 1970, RUSS MATH SURV, DOI [10.1070/RM1970v025n02ABEH003794, DOI 10.1070/RM1970V025N02ABEH003794]
[2]  
Arnold V.I., 1968, ERGODIC PROBLEMS CLA
[3]  
Balescu R., 1975, EQUILIBRIUM NONEQUIL
[4]  
BILLINGSLEY P, 1989, DYNAMICAL SYSTEMS, V2
[5]  
Billingsley P., 1965, ERGODIC THEORY INFOR
[6]   ROUTES TO CHAOTIC SCATTERING [J].
BLEHER, S ;
OTT, E ;
GREBOGI, C .
PHYSICAL REVIEW LETTERS, 1989, 63 (09) :919-922
[7]   ERGODIC PROPERTIES OF NOWHERE DISPERSING BILLIARDS [J].
BUNIMOVICH, LA .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1979, 65 (03) :295-312
[8]   MARKOV PARTITIONS FOR DISPERSED BILLIARDS [J].
BUNIMOVICH, LA ;
SINAI, YG .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1980, 78 (02) :247-280
[9]  
BUNIMOVICH LA, 1980, COMMUN MATH PHYS, V78, P479
[10]   CHAOTIC SCATTERING IN SEVERAL DIMENSIONS [J].
CHEN, Q ;
DING, MZ ;
OTT, E .
PHYSICS LETTERS A, 1990, 145 (2-3) :93-100