ON LIMIT-CYCLES IN FEEDBACK POLYNOMIAL SYSTEMS

被引:9
作者
GENESIO, R
TESI, A
机构
[1] Univ of Florence, Florence, Italy
来源
IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS | 1988年 / 35卷 / 12期
关键词
Mathematical Techniques--Polynomials;
D O I
10.1109/31.9915
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
The problem of the existence and of the uncertainty of limit cycles in nonlinear feedback systems is examined. If approximate solution obtained using the describing function method is assumed to be known for a class of multiloop polynomial systems, then sufficient conditions are derived to ensure in the neighborhood the existence of a true periodic solution and to evaluate its corresponding bounds. Numerical and graphical techniques are given in order to simplify the application of these results. In particular, for a special class of single-loop systems a procedure called the cone criterion is presented. A number of illustrative examples are provided.
引用
收藏
页码:1523 / 1528
页数:6
相关论文
共 14 条
[1]  
Atherton DP., 2007, IEEE T SYST MAN CYB, V7, P678, DOI [10.1109/TSMC.1977.4309808, DOI 10.1109/TSMC.1977.4309808]
[2]   ERROR-BOUNDS FOR GENERAL DESCRIBING FUNCTION PROBLEMS [J].
BERGEN, AR ;
CHUA, LO ;
MEES, AI ;
SZETO, EW .
IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS, 1982, 29 (06) :345-354
[3]   JUSTIFICATION OF DESCRIBING FUNCTION METHOD [J].
BERGEN, AR ;
FRANKS, RL .
SIAM JOURNAL ON CONTROL, 1971, 9 (04) :568-&
[4]  
Gelb A., 1968, MULTIPLE INPUT DESCR
[5]  
GENESIO R, 1987, RT DSI687 U FLOR TEC
[6]  
HOEFLIN DA, IN PRESS CIRCUITS SY
[7]  
HOLTZMAN JN, 1970, NONLINEAR SYSTEM THE
[8]  
KRENZ GS, 1984, IEEE T CIRCUITS SYST, V31, P561
[9]  
KRENZ GS, 1986, SIAM J CONTROL OPTIM, V24, P276
[10]  
LLOYD N.G., 1978, DEGREE THEORY, V73