DUALITY IN THE GROTHENDIECK GROUP OF THE CATEGORY OF FINITE-LENGTH SMOOTH REPRESENTATIONS OF A P-ADIC REDUCTIVE GROUP

被引:101
作者
AUBERT, AM
机构
关键词
REDUCTIVE ALGEBRAIC GROUPS OVER FINITE AND P-ADIC FIELDS; COXETER GROUPS; REPRESENTATIONS;
D O I
10.2307/2154931
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We define an involution on the Grothendieck ring of the category of finite length smooth representations of a p-adic algebraic group, which is a direct analogue Curtis-Alvis duality for finite groups of Lie type. This involution commutes with taking the contragredient, with parabolic induction and, up a few twists, with truncation. It also preserves the irreducible representations up to sign.
引用
收藏
页码:2179 / 2189
页数:11
相关论文
共 11 条
  • [1] BERNSTEIN IN, 1977, ANN SCI ECOLE NORM S, V10, P441
  • [2] TRACE PALEY-WIENER THEOREM FOR REDUCTIVE P-ADIC GROUPS
    BERNSTEIN, J
    DELIGNE, P
    KAZHDAN, D
    [J]. JOURNAL D ANALYSE MATHEMATIQUE, 1986, 47 : 180 - 192
  • [3] Bushnell C.J., 1993, ANN MATH STUD, V129
  • [4] Carter R.W., 1985, FINITE GROUPS LIE TY
  • [5] Casselman W., INTRO THEORY ADMISSI
  • [6] TRUNCATION AND DUALITY IN THE CHARACTER RING OF A FINITE-GROUP OF LIE TYPE
    CURTIS, CW
    [J]. JOURNAL OF ALGEBRA, 1980, 62 (02) : 320 - 332
  • [7] DUALITY FOR REPRESENTATIONS OF A REDUCTIVE GROUP OVER A FINITE-FIELD
    DELIGNE, P
    LUSZTIG, G
    [J]. JOURNAL OF ALGEBRA, 1982, 74 (01) : 284 - 291
  • [8] KATO S, 1993, P AM MATH SOC PROCTE, V119, P951
  • [9] PROCTER K, 1994, THESIS KINGS COLLEGE
  • [10] RODIER F, 1988, B MATH SOC FRANCE, V116