INTEGRAL RESULTS FOR NONLINEAR DIFFUSION-EQUATIONS

被引:27
作者
KING, JR
机构
[1] Department of Theoretical Mechanics, University of Nottingham, Nottingham
关键词
D O I
10.1007/BF00042853
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We show how to construct integral results for the multi-dimensional nonlinear diffusion equation partial-c/partial-t = del. (D(c)del-c), and for some generalisations of this. For appropriate boundary conditions these become integral invariants. An application of these results to determining the large-time behaviour of some radially symmetric problems is indicated.
引用
收藏
页码:191 / 205
页数:15
相关论文
共 24 条
[1]  
ANDRIANKIN EI, 1959, ZH EKSP TEOR FIZ+, V35, P295
[2]   ON THE DISPERSION OF A SOLUTE IN A FLUID FLOWING THROUGH A TUBE [J].
ARIS, R .
PROCEEDINGS OF THE ROYAL SOCIETY OF LONDON SERIES A-MATHEMATICAL AND PHYSICAL SCIENCES, 1956, 235 (1200) :67-77
[3]  
Barenblatt GI, 1957, PRIKL MATH MECH PMM, V21, P718
[4]  
BARENBLATT GI, 1954, PRIKL MAT MEKH, V18, P351
[5]   HIGHER-ORDER NONLINEAR DEGENERATE PARABOLIC EQUATIONS [J].
BERNIS, F ;
FRIEDMAN, A .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1990, 83 (01) :179-206
[6]  
Crank J., 1979, MATH DIFFUSION, V2nd
[7]   THE MESA PROBLEM - DIFFUSION PATTERNS FOR UT = DEL . (UM-DELTA-U) AS M-]INFINITY [J].
ELLIOTT, CM ;
HERRERO, MA ;
KING, JR ;
OCKENDON, JR .
IMA JOURNAL OF APPLIED MATHEMATICS, 1986, 37 (02) :147-154
[8]   THE ANALYSIS OF DIFFUSION DATA BY A METHOD OF MOMENTS [J].
GHEZ, R ;
FEHRIBACH, JD ;
OEHRLEIN, GS .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1985, 132 (11) :2759-2761
[9]  
GI B., 1952, PRIKL MAT MEKH, V16, P67
[10]   LARGE TIME SOLUTION OF AN INHOMOGENEOUS NON-LINEAR DIFFUSION EQUATION [J].
GRUNDY, RE .
PROCEEDINGS OF THE ROYAL SOCIETY OF LONDON SERIES A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 1983, 386 (1791) :347-372