NUMERICAL HOMOCLINIC INSTABILITIES AND THE COMPLEX MODIFIED KORTEWEG-DEVRIES EQUATION

被引:27
作者
HERBST, BM [1 ]
ABLOWITZ, MJ [1 ]
RYAN, E [1 ]
机构
[1] UNIV ORANGE FREE STATE,DEPT APPL MATH,BLOEMFONTEIN 9300,SOUTH AFRICA
基金
美国国家科学基金会;
关键词
D O I
10.1016/0010-4655(91)90165-H
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
We derive analytical expressions for the homoclinic orbits associated with the complex modified Korteweg-de Vries (cmKdV) equation and investigate the effect of discretizations of the equation in the vicinity of these orbits. We show that a standard finite-difference scheme is subject to an instability, which differs in some respects from the instabilities one observes for the nonlinear Schrodinger equation. An integrable discretization of the cmKdV equation is derived and numerical results showing the absence of any instabilities are presented.
引用
收藏
页码:137 / 142
页数:6
相关论文
共 14 条
  • [11] HIROTA R, 1976, LECTURE NOTES MATH, V515
  • [12] ECKHAUS AND BENJAMIN-FEIR RESONANCE MECHANISMS
    STUART, JT
    DIPRIMA, RC
    [J]. PROCEEDINGS OF THE ROYAL SOCIETY OF LONDON SERIES A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 1978, 362 (1708): : 27 - 41
  • [13] ANALYTICAL AND NUMERICAL ASPECTS OF CERTAIN NONLINEAR EVOLUTION-EQUATIONS .1. ANALYTICAL
    TAHA, TR
    ABLOWITZ, MJ
    [J]. JOURNAL OF COMPUTATIONAL PHYSICS, 1984, 55 (02) : 192 - 202
  • [14] WIGGENS S, 1988, GLOBAL BIFURCATIONS