Proof(s) of the Lamperti representation of continuous-state branching processes

被引:44
作者
Emilia Caballero, Ma. [1 ]
Lambert, Amaury [2 ]
Uribe Bravo, Geronimo [3 ]
机构
[1] Univ Nacl Autonoma Mexico, Inst Matemat, Mexico City, DF, Mexico
[2] Univ Paris 06, Lab Probabil & Modeles Aleatoires, Paris, France
[3] Univ Nacl Autonoma Mexico, Inst Invest Matemat Aplicadas & Sistemas, Dept Probabilidad & Estadist, Mexico City, DF, Mexico
关键词
Continuous-state branching processes; spectrally positive Levy processes; random time change; stochastic integral equations; Skorohod topology;
D O I
10.1214/09-PS154
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
This paper uses two new ingredients, namely stochastic differential equations satisfied by continuous-state branching processes (CSBPs), and a topology under which the Lamperti transformation is continuous, in order to provide self-contained proofs of Lamperti's 1967 representation of CSBPs in terms of spectrally positive Levy processes. The first proof is a direct probabilistic proof, and the second one uses approximations by discrete processes, for which the Lamperti representation is evident.
引用
收藏
页码:62 / 89
页数:28
相关论文
共 27 条
[1]   Stochastic flows associated to coalescent processes II: Stochastic differential equations [J].
Bertoin, J ;
Le Gall, JF .
ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 2005, 41 (03) :307-333
[2]  
Bertoin J., 1997, ELECTRON J PROBAB, V2
[3]  
Bertoin J., 1996, CAMBRIDGE TRACTS MAT, V121
[4]  
Bertoin J., 2000, MAPHYSTO LECT NOTES, V8
[5]   Stochastic flows associated to coalescent processes III: Limit theorems [J].
Bertoin, Jean ;
Le Gall, Jean-Francois .
ILLINOIS JOURNAL OF MATHEMATICS, 2006, 50 (01) :147-181
[6]   Exponential functionals of Levy processes [J].
Bertoin, Jean ;
Yor, Marc .
PROBABILITY SURVEYS, 2005, 2 :191-212
[7]  
Billingsley P., 1999, WILEY SERIES PROBABI, V2nd, DOI [10.1002/9780470316962, DOI 10.1002/9780470316962]
[8]  
Bingham N. H., 1976, Stochastic Processes & their Applications, V4, P217, DOI 10.1016/0304-4149(76)90011-9
[9]   Skew convolution semigroups and affine Markov processes [J].
Dawson, D. A. ;
Li, Zenghu .
ANNALS OF PROBABILITY, 2006, 34 (03) :1103-1142
[10]  
DYNKIN EB, 1965, GRUNDLEHREN MATH WIS, V0122