SUPERPOSITION OF SOLITONS AND DISCRETE EVOLUTION-EQUATIONS

被引:11
作者
CHOW, KW
机构
[1] Department of Mathematics, University of Arizona, Tucson, AZ
关键词
D O I
10.1088/0031-8949/50/3/002
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Solutions of differential-difference Korteweg-de Vries (KdV), modified KdV and generalized KdV equations are given in terms of theta functions. The dispersion relation is given in elegant, compact forms and the solutions consist of a sequence of solitons. A fully discrete or partial difference KdV equation is also treated. A new identity in theta function enables the elliptic function solution to be rewritten as a sum of solitons.
引用
收藏
页码:233 / 237
页数:5
相关论文
共 12 条
[1]  
Ablowitz M J., 1981, SOLITONS INVERSE SCA
[2]   NONLINEAR DIFFERENTIAL-DIFFERENCE EQUATIONS AND FOURIER-ANALYSIS [J].
ABLOWITZ, MJ ;
LADIK, JF .
JOURNAL OF MATHEMATICAL PHYSICS, 1976, 17 (06) :1011-1018
[3]  
Abramowitz M., 1965, HDB MATH FUNCTIONS
[4]  
BOYD JP, 1990, ADV APPL MECH, V27, P1
[5]   SUPERPOSITION OF SOLITONS AND THE MODIFIED INTERMEDIATE LONG-WAVE EQUATION [J].
CHOW, KW .
PHYSICS LETTERS A, 1993, 179 (4-5) :299-305
[6]   THETA-FUNCTIONS AND THE DISPERSION-RELATIONS OF PERIODIC-WAVES [J].
CHOW, KW .
JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 1993, 62 (06) :2007-2011
[7]   NONLINEAR PARTIAL DIFFERENCE EQUATIONS .1. DIFFERENCE ANALOG OF KORTEWEG-DEVRIES EQUATION [J].
HIROTA, R .
JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 1977, 43 (04) :1424-1433
[8]  
Hirota R., 1976, Progress of Theoretical Physics Supplement, P64, DOI 10.1143/PTPS.59.64
[9]  
LAWDEN DF, 1989, APPLIED MATH SCI, V80
[10]   BINDING-ENERGIES FOR DISCRETE NONLINEAR SCHRODINGER-EQUATIONS [J].
MILLER, PD ;
SCOTT, AC ;
CARR, J ;
EILBECK, JC .
PHYSICA SCRIPTA, 1991, 44 (06) :509-516