WEIGHTED K-CARDINALITY TREES - COMPLEXITY AND POLYHEDRAL STRUCTURE

被引:77
作者
FISCHETTI, M
HAMACHER, HW
JORNSTEN, K
MAFFIOLI, F
机构
[1] UNIV KAISERSLAUTERN,FACHBEREICH MATH,W-6750 KAISERSLAUTERN,GERMANY
[2] NORWEGIAN SCH BUS ADM,DEPT FINANCE & M SCI,N-5035 BERGEN,NORWAY
[3] POLITECN MILAN,DIP ELETTR & INFORMAZ,I-20133 MILAN,ITALY
关键词
D O I
10.1002/net.3230240103
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
We consider the k-CARD TREE problem, i.e., the problem of finding in a given undirected graph G a subtree with kedges, having minimum weight. Applications of this problem arise in oil-field leasing and facility layout. Although the general problem is shown to be strongly NP hard, it can be solved in polynomial time if G is itself a tree. We give an integer programming formulation of k-CARD TREE and an efficient exact separation routine for a set of generalized subtour elimination constraints. The polyhedral structure of the convex hull of the integer solutions is studied. (C) 1994 by John Wiley & Sons, Inc.
引用
收藏
页码:11 / 21
页数:11
相关论文
共 10 条
[1]   A LIFTING PROCEDURE FOR THE ASYMMETRIC TRAVELING SALESMAN POLYTOPE AND A LARGE NEW CLASS OF FACETS [J].
BALAS, E ;
FISCHETTI, M .
MATHEMATICAL PROGRAMMING, 1993, 58 (03) :325-352
[2]   THE FIXED-OUTDEGREE 1-ARBORESCENCE POLYTOPE [J].
BALAS, E ;
FISCHETTI, M .
MATHEMATICS OF OPERATIONS RESEARCH, 1992, 17 (04) :1001-1018
[3]  
FAIGLE U, 1990, 899 U TWENT FAC APPL
[4]   FACETS OF 2 STEINER ARBORESCENCE POLYHEDRA [J].
FISCHETTI, M .
MATHEMATICAL PROGRAMMING, 1991, 51 (03) :401-419
[5]  
FOULDS LR, 1992, 19923 U WAIK DEP MAN
[6]  
Garey M. R., 1979, COMPUTERS INTRACTABI
[7]  
HAMACHER HW, 1992, OPTIMAL RELINQUISHME
[8]  
KERSHENBAUM A, 1973, NETWORKS, V3, P81
[9]  
MAFFIOLI F, 1991, 91041 POL MIL DIP EL
[10]   SHORTEST CONNECTION NETWORKS AND SOME GENERALIZATIONS [J].
PRIM, RC .
BELL SYSTEM TECHNICAL JOURNAL, 1957, 36 (06) :1389-1401