On algebraic solitons for geometric evolution equations on three-dimensional Lie groups

被引:8
作者
Wears, Thomas H. [1 ]
机构
[1] Longwood Univ, Dept Math & Comp Sci, 201 High St, Farmville, VA 23909 USA
关键词
Geometric evolution equations; soliton metrics; algebraic soliton metrics; Lie groups;
D O I
10.1515/tmj-2016-0018
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The relationship between algebraic soliton metrics and self similar solutions of geometric evolution equations on Lie groups is investigated. After discussing the general relationship between algebraic soliton metrics and self-similar solutions to geometric evolution equations, we investigate the cross curvature flow and the second order renormalization group flow on simply-connected, three-dimensional, unimodular Lie groups, providing a complete classification of left invariant algebraic solitons that give rise to self-similar solutions of the corresponding flows on such spaces.
引用
收藏
页码:33 / 58
页数:26
相关论文
共 30 条
  • [1] Short-time existence of solutions to the cross curvature flow on 3-manifolds
    Buckland, JA
    [J]. PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2006, 134 (06) : 1803 - 1807
  • [2] Cross curvature flow on locally homogenous three-manifolds, I
    Cao, Xiaodong
    Ni, Yilong
    Saloff-Coste, Laurent
    [J]. PACIFIC JOURNAL OF MATHEMATICS, 2008, 236 (02) : 263 - 281
  • [3] Cao XDZ, 2009, ASIAN J MATH, V13, P421
  • [4] Cao XD, 2009, COMMUN ANAL GEOM, V17, P777
  • [5] Chow B., 2007, MATH SURVEYS MONOGRA, V135
  • [6] CHOW B, 2004, MATH SURVEYS MONOGRA, V110
  • [7] Chow Bennett, 2006, GRADUATE STUDIES MAT, V77
  • [8] Cross curvature flow on a negatively curved solid torus
    DeBlois, Jason
    Knopf, Dan
    Young, Andrea
    [J]. ALGEBRAIC AND GEOMETRIC TOPOLOGY, 2010, 10 (01): : 343 - 372
  • [9] NONLINEAR MODELS IN 2 + EPSILON-DIMENSIONS
    FRIEDAN, DH
    [J]. ANNALS OF PHYSICS, 1985, 163 (02) : 318 - 419
  • [10] Gawedzki K., 1999, QUANTUM FIELDS STRIN, V2, P727