Residual Stresses in Biaxially Fatigued Austenitic Stainless Steel Sample of Cruciform Geometry

被引:0
作者
Taran, Yu. V. [1 ]
Balagurov, A. M. [1 ]
Schreiber, J. [2 ]
Evans, A. [3 ]
Venter, A. M. [4 ]
机构
[1] Joint Inst Nucl Res, Dubna, Russia
[2] Fraunhofer Inst Nondestruct Testing, Dresden Branch, Dresden, Germany
[3] Paul Scherer Inst, SINQ, Villigen, Switzerland
[4] NECSA Ltd, Div Res & Dev, Pretoria, South Africa
关键词
D O I
10.1134/S1547477111020130
中图分类号
O412 [相对论、场论]; O572.2 [粒子物理学];
学科分类号
摘要
A specifically designed cruciform-shaped austenitic stainless steel AISI 321 sample was subjected to ex-situ biaxial tension-compression cycling to establish ferromagnetic martensitic phase conversion under the action of plastic deformation. The time-of-flight neutron diffraction technique was employed for in-plane residual stress determination in this sample for both the austenitic and martensitic phases. The 2D data enabled determination of the macro-, micro-, hydro-and deviatoric contributions to the total phase stresses.
引用
收藏
页码:136 / 140
页数:5
相关论文
共 50 条
[41]   Fatigue dependence of residual magnetization in austenitic stainless steel plates [J].
Oka, M ;
Yakushiji, T ;
Enokizono, M .
IEEE TRANSACTIONS ON MAGNETICS, 2001, 37 (04) :2045-2048
[42]   Residual stress distribution in hardfaced austenitic stainless steel sleeves [J].
Dey, HC ;
Bhaduri, AK ;
Mahadevan, S ;
Sharma, GK ;
Jayakumar, T ;
Shankar, V ;
Rao, BPS .
TRANSACTIONS OF THE INDIAN INSTITUTE OF METALS, 2004, 57 (03) :271-276
[43]   Oxide growth stresses in an austenitic stainless steel determined by creep extension [J].
Gray, S ;
Berriche-Bouhanek, K ;
Evans, HE .
HIGH TEMPERATURE CORROSION AND PROTECTION OF MATERIALS 6, PRT 1 AND 2, PROCEEDINGS, 2004, 461-464 :755-761
[44]   Electrochemical behaviour of austenitic stainless steel under tribological stresses and irradiation [J].
Normand, Bernard ;
Bererd, Nicolas ;
Martinet, Philippe ;
Marcelin, Sabrina ;
Moine, Moustapha ;
Feirrera, Jose ;
Baux, Dominique ;
Sauvage, Thierry ;
Moncoffre, Nathalie .
CORROSION SCIENCE, 2020, 176
[45]   Study of surface relief evolution in fatigued 316L austenitic stainless steel by AFM [J].
Man, J ;
Obrtlík, K ;
Polák, J .
MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2003, 351 (1-2) :123-132
[46]   Comparative study on girth weld-induced residual stresses between austenitic and duplex stainless steel pipe welds [J].
Lee, Chin-Hyung ;
Chang, Kyong-Ho .
APPLIED THERMAL ENGINEERING, 2014, 63 (01) :140-150
[47]   Changing Mechanisms of Surface Relief and the Damage Evaluation of Low Cycle Fatigued Austenitic Stainless Steel [J].
Fujimura, Nao ;
Nakamura, Takashi ;
Takahashi, Kosuke .
12TH INTERNATIONAL FATIGUE CONGRESS (FATIGUE 2018), 2018, 165
[48]   Effect of heat input on the microstructure, residual stresses and corrosion resistance of 304L austenitic stainless steel weldments [J].
Unnikrishnan, Rahul ;
Idury, K. S. N. Satish ;
Ismail, T. P. ;
Bhadauria, Alok ;
Shekhawat, S. K. ;
Khatirkar, Rajesh K. ;
Sapate, Sanjay G. .
MATERIALS CHARACTERIZATION, 2014, 93 :10-23
[49]   Fatigue crack growth in cruciform welded joints: Influence of residual stresses and of the weld toe geometry [J].
Ngoula, D. Tchoffo ;
Beier, H. Th. ;
Vormwald, M. .
INTERNATIONAL JOURNAL OF FATIGUE, 2017, 101 :253-262
[50]   Residual stresses in austenitic steel during plastic deformation and recovery processes [J].
Wawszczak, Roman ;
Baczmanski, Andrzej ;
Braham, Chedly ;
Seiler, Wilfrid ;
Wrobel, Miroslaw ;
Wierzbanowski, Krzysztof .
RESIDUAL STRESSES VIII, 2011, 681 :223-+