NUMERICAL CONSIDERATIONS IN COMPUTING INVARIANT SUBSPACES

被引:15
作者
DONGARRA, JJ
HAMMARLING, S
WILKINSON, JH
机构
[1] OAK RIDGE NATL LAB,MATH SCI SECT,OAK RIDGE,TN 37831
[2] NUMER ALGORITHMS GRP LTD,OXFORD OX2 8DR,ENGLAND
关键词
INVARIANT SUBSPACES; EIGENVALUES; ILL-CONDITIONED EIGENVALUES;
D O I
10.1137/0613013
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper describes two methods for computing the invariant subspace of a matrix. The first method involves using transformations to interchange the eigenvalues. The matrix is assumed to be in Schur form and transformations are applied to interchange neighboring blocks. The blocks can be either one by one or two by two. The second method involves the construction of an invariant subspace by a direct computation of the vectors, rather than by applying transformations to move the desired eigenvalues to the top of the matrix.
引用
收藏
页码:145 / 161
页数:17
相关论文
共 13 条
[1]  
ANDERSON E, 1990, SUPERCOMPUTER 90
[2]  
BAI Z, 1990, CS8986 U TENN COMP S
[3]   ALGORITHM FOR COMPUTING REDUCING SUBSPACES BY BLOCK DIAGONALIZATION [J].
BAVELY, CA ;
STEWART, GW .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1979, 16 (02) :359-367
[4]   3 METHODS FOR REFINING ESTIMATES OF INVARIANT SUBSPACES [J].
DEMMEL, JW .
COMPUTING, 1987, 38 (01) :43-57
[5]   AN ALGORITHM FOR NUMERICAL COMPUTATION OF THE JORDAN NORMAL-FORM OF A COMPLEX MATRIX [J].
KAGSTROM, B ;
RUHE, A .
ACM TRANSACTIONS ON MATHEMATICAL SOFTWARE, 1980, 6 (03) :398-419
[6]  
KAGSTROM B, 1980, ACM T MATH SOFTWARE, V6, P437, DOI 10.1145/355900.355917
[7]  
NG KC, 1988, 381 U CAL CTR PUR AP
[8]  
Ruhe A., 1970, BIT (Nordisk Tidskrift for Informationsbehandling), V10, P343, DOI 10.1007/BF01934203
[9]  
Stewart G. W., 1976, ACM Transactions on Mathematical Software, V2, P275, DOI 10.1145/355694.355700
[10]   REALISTIC ERROR-BOUNDS FOR A SIMPLE EIGENVALUE AND ITS ASSOCIATED EIGENVECTOR [J].
SYMM, HJ ;
WILKINSON, JH .
NUMERISCHE MATHEMATIK, 1980, 35 (02) :113-126