A PHYSIOLOGICAL-ROLE FOR ENDOGENOUS ZINC IN RAT HIPPOCAMPAL SYNAPTIC NEUROTRANSMISSION

被引:378
作者
XIE, XM [1 ]
SMART, TG [1 ]
机构
[1] UNIV LONDON, DEPT PHARMACOL, 29-39 BRUNSWICK SQ, LONDON WC1N 1AX, ENGLAND
基金
英国惠康基金;
关键词
D O I
10.1038/349521a0
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
THE mammalian central nervous system (CNS) contains an abundance of the transition metal zinc, which is highly localized in the neuronal parenchyma 1-4. Zinc is actively taken up 5,6 and stored in synaptic vesicles in nerve terminals 7-10, and stimulation of nerve fibre tracts that contain large amounts of zinc, such as the hippocampal mossy fibre system 4, can induce its release 11-13, suggesting that it may act as a neuromodulator. The known interaction of zinc with the major excitatory and inhibitory amino-acid neurotransmitter receptors in the CNS supports this notion 14-16. That zinc has a role in CNS synaptic transmission, however, has so far not been shown. Here we report a physiological role for zinc in the young rat hippocampus (postnatal, P3-P14 days). Our results indicate that naturally occurring spontaneous giant depolarizing synaptic potentials (GDPs) in young CA3 pyramidal neurones, mediated by the release of GABA (gamma-aminobutyric acid) 17, are induced by endogenously released zinc. These synaptic potentials are inhibited by specific zinc-chelating agents. GDPs are apparently generated by an inhibitory action of zinc on both pre- and postsynaptic GABA(B) receptors in the hippocampus. Our study implies that zinc modulates synaptic transmission in the immature hippocampus, a finding that may have implications for understanding benign postnatal seizures in young children suffering with acute zinc deficiency 18.
引用
收藏
页码:521 / 524
页数:4
相关论文
共 30 条
[1]   FEEDFORWARD DENDRITIC INHIBITION IN RAT HIPPOCAMPAL PYRAMIDAL CELLS STUDIED INVITRO [J].
ALGER, BE ;
NICOLL, RA .
JOURNAL OF PHYSIOLOGY-LONDON, 1982, 328 (JUL) :105-123
[2]   2 DIFFERENT RESPONSES OF HIPPOCAMPAL PYRAMIDAL CELLS TO APPLICATION OF GAMMA-AMINO BUTYRIC-ACID [J].
ANDERSEN, P ;
DINGLEDINE, R ;
GJERSTAD, L ;
LANGMOEN, IA ;
LAURSEN, AM .
JOURNAL OF PHYSIOLOGY-LONDON, 1980, 305 (AUG) :279-296
[3]   RELEASE OF ENDOGENOUS ZN-2+ FROM BRAIN-TISSUE DURING ACTIVITY [J].
ASSAF, SY ;
CHUNG, SH .
NATURE, 1984, 308 (5961) :734-736
[4]   GIANT SYNAPTIC POTENTIALS IN IMMATURE RAT CA3 HIPPOCAMPAL-NEURONS [J].
BENARI, Y ;
CHERUBINI, E ;
CORRADETTI, R ;
GAIARSA, JL .
JOURNAL OF PHYSIOLOGY-LONDON, 1989, 416 :303-325
[5]  
CHARTON G, 1985, EXP BRAIN RES, V58, P202
[6]  
CRAWFORD IL, 1975, J ORTHOMOL MED, V4, P39
[7]   ZINC IN MATURING RAT-BRAIN - HIPPOCAMPAL CONCENTRATION AND LOCALIZATION [J].
CRAWFORD, IL ;
CONNOR, JD .
JOURNAL OF NEUROCHEMISTRY, 1972, 19 (06) :1451-&
[8]   PERSISTENT FUNCTION OF MOSSY FIBER SYNAPSES AFTER METAL CHELATION WITH DEDTC (ANTABUSE) [J].
DANSCHER, G ;
SHIPLEY, MT ;
ANDERSEN, P .
BRAIN RESEARCH, 1975, 85 (03) :522-526
[9]  
DANSCHER G, 1984, NEUROBIOLOGY ZINC, VA, P227
[10]  
DOLLER HJ, 1984, NEUROBIOLOGY ZINC, VB, P163