A HIGHER-ORDER APPROACH FOR TIME-FRACTIONAL GENERALIZED BURGERS' EQUATION

被引:0
|
作者
Taneja, Komal [1 ]
Deswal, Komal [1 ]
Kumar, Devendra [1 ]
Baleanu, Dumitru [2 ,3 ]
机构
[1] Birla Inst Technol & Sci, Dept Math, Pilani 333031, Rajasthan, India
[2] Cankaya Univ, Fac Arts & Sci, Dept Math & Comp Sci, TR-06530 Ankara, Turkiye
[3] Inst Space Sci, R-077125 Magurle Bucharest, Romania
关键词
Mittag-Leffler Kernel; Compact Finite Difference Method; Time-Fractional Generalized Burgers' Equation; Von-Neumann's Method; Stability; Convergence;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A fast higher-order scheme is established for solving inhomogeneous time-fractional generalized Burgers' equation. The time-fractional operator is taken as the modified operator with the Mittag-Leffler kernel. Through stability analysis, it has been demonstrated that the proposed numerical approach is unconditionally stable. The convergence of the numerical method is analyzed theoretically using von Neumann's method. It has been proved that the proposed numerical method is fourth-order convergent in space and second-order convergent in time in the L2-norm. The scheme's proficiency and effectiveness are examined through two numerical experiments to validate the theoretical estimates. The tabular and graphical representations of numerical results confirm the high accuracy and versatility of the scheme.
引用
收藏
页数:22
相关论文
共 50 条
  • [1] A HIGHER-ORDER APPROACH FOR TIME-FRACTIONAL GENERALIZED BURGERS' EQUATION
    Taneja, Komal
    Deswal, Komal
    Kumar, Devendra
    Baleanu, Dumitru
    FRACTALS-COMPLEX GEOMETRY PATTERNS AND SCALING IN NATURE AND SOCIETY, 2023, 31 (07)
  • [2] A Second-Order Scheme for the Generalized Time-Fractional Burgers' Equation
    Chawla, Reetika
    Kumar, Devendra
    Singh, Satpal
    JOURNAL OF COMPUTATIONAL AND NONLINEAR DYNAMICS, 2024, 19 (01):
  • [3] An efficient algorithm for solving the variable-order time-fractional generalized Burgers' equation
    Rawani, Mukesh Kumar
    Verma, Amit Kumar
    Cattani, Carlo
    JOURNAL OF APPLIED MATHEMATICS AND COMPUTING, 2024, 70 (06) : 5269 - 5291
  • [4] An implicit scheme for time-fractional coupled generalized Burgers' equation
    Vigo-Aguiar, J.
    Chawla, Reetika
    Kumar, Devendra
    Mazumdar, Tapas
    JOURNAL OF MATHEMATICAL CHEMISTRY, 2024, 62 (03) : 689 - 710
  • [5] An implicit scheme for time-fractional coupled generalized Burgers’ equation
    J. Vigo-Aguiar
    Reetika Chawla
    Devendra Kumar
    Tapas Mazumdar
    Journal of Mathematical Chemistry, 2024, 62 : 689 - 710
  • [6] L1/LDG method for the generalized time-fractional Burgers equation
    Li, Changpin
    Li, Dongxia
    Wang, Zhen
    MATHEMATICS AND COMPUTERS IN SIMULATION, 2021, 187 : 357 - 378
  • [7] A new numerical formulation for the generalized time-fractional Benjamin Bona Mohany Burgers' equation
    Chawla, Reetika
    Deswal, Komal
    Kumar, Devendra
    INTERNATIONAL JOURNAL OF NONLINEAR SCIENCES AND NUMERICAL SIMULATION, 2023, 24 (03) : 883 - 898
  • [8] Second order difference schemes for time-fractional KdV-Burgers' equation with initial singularity
    Cen, Dakang
    Wang, Zhibo
    Mo, Yan
    APPLIED MATHEMATICS LETTERS, 2021, 112
  • [9] A robust higher-order numerical technique with graded and harmonic meshes for the time-fractional diffusion-advection-reaction equation
    Taneja, Komal
    Deswal, Komal
    Kumar, Devendra
    MATHEMATICS AND COMPUTERS IN SIMULATION, 2023, 213 : 348 - 373
  • [10] L1/LDG Method for the Generalized Time-Fractional Burgers Equation in Two Spatial Dimensions
    Changpin Li
    Dongxia Li
    Zhen Wang
    Communications on Applied Mathematics and Computation, 2023, 5 : 1299 - 1322