VECTORIZATION OF SOME BLOCK PRECONDITIONED CONJUGATE-GRADIENT METHODS

被引:2
作者
BRUGNANO, L
MARRONE, M
机构
[1] Dipartimento di Matematica, Università di Bari, 70125 Bari, Via G. Fortunato
关键词
block preconditioning; Linear algebra; preconditioned conjugate gradient methods; vector processors;
D O I
10.1016/0167-8191(90)90106-J
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
The block preconditioned conjugate gradient methods are very effective to solve the linear systems arising from the discretization of elliptic PDE. Nevertheless, the solution of the linear system Ms = r, to get the preconditioned residual, is a 'bottleneck', on vector processors. In this paper, we show how to modify the algorithm, in order to get better performances, on such computers. Numerical tests carried out on a CRAY X-MP/48 are presented, in order to give numerical evidence. © 1990.
引用
收藏
页码:191 / 198
页数:8
相关论文
共 7 条
[1]  
AXELSSON O, 1985, BIT, V25, P166
[2]  
BRUGNANO L, 189 U BAR DIP MAT QU
[3]   ON COMPUTING INV BLOCK PRECONDITIONINGS FOR THE CONJUGATE-GRADIENT METHOD [J].
CONCUS, P ;
MEURANT, G .
BIT, 1986, 26 (04) :493-504
[4]   BLOCK PRECONDITIONING FOR THE CONJUGATE-GRADIENT METHOD [J].
CONCUS, P ;
GOLUB, GH ;
MEURANT, G .
SIAM JOURNAL ON SCIENTIFIC AND STATISTICAL COMPUTING, 1985, 6 (01) :220-252
[5]   MULTITASKING THE CONJUGATE-GRADIENT METHOD ON THE CRAY X-MP/48 [J].
MEURANT, G .
PARALLEL COMPUTING, 1987, 5 (03) :267-280
[6]   A VECTORIZABLE VARIANT OF SOME ICCG METHODS [J].
VANDERVORST, HA .
SIAM JOURNAL ON SCIENTIFIC AND STATISTICAL COMPUTING, 1982, 3 (03) :350-356
[7]  
Varga R.S., 1962, ITERATIVE ANAL