ON THE STABILITY OF THE MIXED TYPE FUNCTIONAL EQUATION IN RANDOM NORMED SPACES VIA FIXED POINT METHOD

被引:1
作者
Jin, Sun Sook [1 ]
Lee, Yang-Hi [2 ]
机构
[1] Gongju Natl Univ Educ, Dept Math Educ, Gongju 314711, South Korea
[2] Gongju Natl Univ Educ, Dept Math Educ, Gongju 314711, South Korea
来源
JOURNAL OF THE KOREAN SOCIETY OF MATHEMATICAL EDUCATION SERIES B-PURE AND APPLIED MATHEMATICS | 2012年 / 19卷 / 01期
关键词
stability; additive mapping; mixed type functional equation; random normed space;
D O I
10.7468/jksmeb.2012.19.1.59
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we prove the stability in random normed spaces via fixed point method for the functional equation f (x + y + z) f (x + y) f (y z) f (x + z) + f (x) f (y) + f (z) = 0. by using a fixed point theorem in the sense of L. Cadariu and V. Radu.
引用
收藏
页码:59 / 71
页数:13
相关论文
共 20 条
[1]  
Aoki T., 1950, J MATH SOC JAPAN, V1, P64, DOI [10.2969/jmsj/00210064, DOI 10.2969/JMSJ/00210064]
[2]  
Cholewa P.W., 1984, AEQUATIONES MATH, V27, P76
[3]   A FIXED POINT THEOREM OF ALTERNATIVE FOR CONTRACTIONS ON A GENERALIZED COMPLETE METRIC SPACE [J].
DIAZ, JB ;
MARGOLIS, B .
BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1968, 74 (02) :305-&
[4]  
Gajda Z., 1991, INT J MATH MATH SCI, V14, P431, DOI [10.1155/S016117129100056X, DOI 10.1155/S016117129100056X]
[5]   A GENERALIZATION OF THE HYERS-ULAM-RASSIAS STABILITY OF APPROXIMATELY ADDITIVE MAPPINGS [J].
GAVRUTA, P .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1994, 184 (03) :431-436
[6]   On the stability of the linear functional equation [J].
Hyers, DH .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1941, 27 :222-224
[7]  
Jin S.-S., FIXED POINT IN PRESS
[8]   On the Hyers-Ulam stability of the functional equations that have the quadratic property [J].
Jung, SM .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1998, 222 (01) :126-137
[9]   On the stability problem for a mixed type of quartic and quadratic functional equation [J].
Kim, Hark-Mahn .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2006, 324 (01) :358-372
[10]   On the stability of the monomial functional equation [J].
Lee, Yang-Hi .
BULLETIN OF THE KOREAN MATHEMATICAL SOCIETY, 2008, 45 (02) :397-403