QUANTUM COHOMOLOGY OF FLAG MANIFOLDS AND TODA-LATTICES

被引:124
作者
GIVENTAL, A
KIM, B
机构
[1] Dept. of Math., University of California, Berkeley, 94720, CA
关键词
D O I
10.1007/BF02101846
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We discuss relations of Vafa's quantum cohomology with Floer's homology theory, introduce equivariant quantum cohomology, formulate some conjectures about its general properties and, on the basis of these conjectures, compute quantum cohomology algebras of the flag manifolds. The answer turns out to coincide with the algebra of regular functions on an invariant lagrangian variety of a Toda lattice.
引用
收藏
页码:609 / 641
页数:33
相关论文
共 22 条
[1]  
ATIYAH M, 1982, B LOND MATH SOC, V23, P1
[2]   THE MOMENT MAP AND EQUIVARIANT CO-HOMOLOGY [J].
ATIYAH, MF ;
BOTT, R .
TOPOLOGY, 1984, 23 (01) :1-28
[3]  
CECOTTI S, HUTP91A062 PREPR
[4]   INTEGRABLE SYSTEMS IN TOPOLOGICAL FIELD-THEORY [J].
DUBROVIN, B .
NUCLEAR PHYSICS B, 1992, 379 (03) :627-689
[5]  
FEIGIN B, 1993, INTEGRALS MOTION QUA
[6]   SYMPLECTIC FIXED-POINTS AND HOLOMORPHIC SPHERES [J].
FLOER, A .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1989, 120 (04) :575-611
[7]  
GINSBURG VA, 1987, FUNCT ANAL APPL, V21, P271
[8]  
GIVENTAL A, IN PRESS PROGR MATH, V93
[9]  
GIVENTAL A, ICM94 ZUR
[10]   PERIODIC MAPS IN SYMPLECTIC TOPOLOGY [J].
GIVENTAL, AB .
FUNCTIONAL ANALYSIS AND ITS APPLICATIONS, 1989, 23 (04) :287-300