NONSYMMETRIC CONFIGURATIONS WITH NATURAL INDEX

被引:10
作者
GROPP, H
机构
[1] W-69121 Heidelberg
关键词
D O I
10.1016/0012-365X(94)90087-6
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The existence of nonsymmetric configurations (v(r), b(k)) is discussed here for the first time as a general problem. By using results about resolvable and near-resolvable Steiner systems as well as difference triangle sets, the existence of all configurations with k = 3 is proved. For k greater than or equal to 4 many infinite series of configurations with natural index are constructed, i.e. configurations where the number of blocks b is a multiple of the number of points v.
引用
收藏
页码:87 / 98
页数:12
相关论文
共 13 条
[1]  
GROPP H, 1990, C MATH SYSTEMS THEOR
[2]  
GROPP H, 1990, J COMBIN INFORM SYST, V15, P40
[3]  
Gropp H., 1992, ANN DISCRETE MATH, V52, P227
[4]  
Hanani H., 1972, DISCRETE MATH, V3, P343
[5]  
JUNGNICKEL D, 1989, ARS COMBINATORIA, V28, P129
[6]  
Kirkman T. P., 1850, CAMBRIDGE DUBLIN MAT, V5, P255
[7]  
KLOVE T, 1988, IEEE T INFORM THEORY, V35, P879
[8]   THE STEINER SYSTEMS S(2,4,25) WITH NONTRIVIAL AUTOMORPHISM GROUP [J].
KRAMER, ES ;
MAGLIVERAS, SS ;
MATHON, R .
DISCRETE MATHEMATICS, 1989, 77 (1-3) :137-157
[9]  
Lenz, 1985, DESIGN THEORY
[10]  
Ray-Chaudhuri D.K., 1971, COMBINATORICS P S PU, VXIX, P187