Structured learning algorithm for detection of nonobstructive and obstructive coronary plaque lesions from computed tomography angiography

被引:89
作者
Kang, Dongwoo [1 ]
Dey, Damini [2 ]
Slomka, Piotr J. [3 ,4 ,5 ]
Arsanjani, Reza [3 ,4 ,5 ]
Nakazato, Ryo [3 ,4 ,5 ]
Ko, Hyunsuk [1 ]
Berman, Daniel S. [3 ,4 ,5 ]
Li, Debiao [2 ]
Kuoa, C-C. Jay [1 ]
机构
[1] Univ So Calif, Dept Elect Engn, Los Angeles, CA 90089 USA
[2] Cedars Sinai Med Ctr, Biomed Imaging Res Inst, Dept Biomed Sci, Los Angeles, CA 90048 USA
[3] Cedars Sinai Med Ctr, Dept Imaging, Los Angeles, CA 90048 USA
[4] Cedars Sinai Med Ctr, Dept Med, Los Angeles, CA 90048 USA
[5] Cedars Sinai Heart Inst, Los Angeles, CA 90048 USA
关键词
structured learning; learning-based detection; machine learning; image feature extraction; support vector machines; support vector regression; coronary computed tomography angiography; coronary arterial disease; coronary arterial lesion detection from coronary computed tomography angiography;
D O I
10.1117/1.JMI.2.1.014003
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
Visual identification of coronary arterial lesion from three-dimensional coronary computed tomography angiography (CTA) remains challenging. We aimed to develop a robust automated algorithm for computer detection of coronary artery lesions by machine learning techniques. A structured learning technique is proposed to detect all coronary arterial lesions with stenosis >= 25%. Our algorithm consists of two stages: (1) two independent base decisions indicating the existence of lesions in each arterial segment and (b) the final decision made by combining the base decisions. One of the base decisions is the support vector machine (SVM) based learning algorithm, which divides each artery into small volume patches and integrates several quantitative geometric and shape features for arterial lesions in each small volume patch by SVM algorithm. The other base decision is the formula-based analytic method. The final decision in the first stage applies SVM-based decision fusion to combine the two base decisions in the second stage. The proposed algorithm was applied to 42 CTA patient datasets, acquired with dual-source CT, where 21 datasets had 45 lesions with stenosis >= 25%. Visual identification of lesions with stenosis >= 25% by three expert readers, using consensus reading, was considered as a reference standard. Our method performed with high sensitivity (93%), specificity (95%), and accuracy (94%), with receiver operator characteristic area under the curve of 0.94. The proposed algorithm shows promising results in the automated detection of obstructive and nonobstructive lesions from CTA. (c) 2015 Society of Photo-Optical Instrumentation Engineers (SPIE)
引用
收藏
页数:9
相关论文
共 56 条
[1]   Detection of calcified and noncalcified coronary atherosclerotic plaque by contrast-enhanced, submillimeter multidetector spiral computed tomography - A segment-based comparison with intravascular ultrasound [J].
Achenbach, S ;
Moselewski, F ;
Ropers, D ;
Ferencik, M ;
Hoffmann, U ;
MacNeill, B ;
Pohle, K ;
Baum, U ;
Anders, K ;
Jang, I ;
Daniel, WG ;
Brady, TJ .
CIRCULATION, 2004, 109 (01) :14-17
[2]   Randomized Comparison of 64-Slice Single- and Dual-Source Computed Tomography Coronary Angiography for the Detection of Coronary Artery Disease [J].
Achenbach, Stephan ;
Ropers, Ulrike ;
Kuettner, Axel ;
Anders, Katharina ;
Pflederer, Tobias ;
Komatsu, Sei ;
Bautz, Werner ;
Daniel, Werner G. ;
Ropers, Dieter .
JACC-CARDIOVASCULAR IMAGING, 2008, 1 (02) :177-186
[3]   Automated computer-aided stenosis detection at coronary CT angiography: initial experience [J].
Arnoldi, Elisabeth ;
Gebregziabher, Mulugeta ;
Schoepf, U. Joseph ;
Goldenberg, Roman ;
Ramos-Duran, Luis ;
Zwerner, Peter L. ;
Nikolaou, Konstantin ;
Reiser, Maximilian F. ;
Costello, Philip ;
Thilo, Christian .
EUROPEAN RADIOLOGY, 2010, 20 (05) :1160-1167
[4]   Automated quantification of coronary plaque with computed tomography: comparison with intravascular ultrasound using a dedicated registration algorithm for fusion-based quantification [J].
Boogers, Mark J. ;
Broersen, Alexander ;
van Velzen, Joella E. ;
de Graaf, Fleur R. ;
El-Naggar, Heba M. ;
Kitslaar, Pieter H. ;
Dijkstra, Jouke ;
Delgado, Victoria ;
Boersma, Eric ;
de Roos, Albert ;
Schuijf, Joanne D. ;
Schalij, Martin J. ;
Reiber, Johan H. C. ;
Bax, Jeroen J. ;
Jukema, J. Wouter .
EUROPEAN HEART JOURNAL, 2012, 33 (08) :1007-1016
[5]   Toward the automatic detection of coronary artery calcification in non-contrast computed tomography data [J].
Brunner, Gerd ;
Chittajallu, Deepak R. ;
Kurkure, Uday ;
Kakadiaris, Ioannis A. .
INTERNATIONAL JOURNAL OF CARDIOVASCULAR IMAGING, 2010, 26 (07) :829-838
[6]   Diagnostic Performance of 64-Multidetector Row Coronary Computed Tomographic Angiography for Evaluation of Coronary Artery Stenosis in Individuals Without Known Coronary Artery Disease [J].
Budoff, Matthew J. ;
Dowe, David ;
Jollis, James G. ;
Gitter, Michael ;
Sutherland, John ;
Halamert, Edward ;
Scherer, Markus ;
Bellinger, Raye ;
Martin, Arthur ;
Benton, Robert ;
Delago, Augustin ;
Min, James K. .
JOURNAL OF THE AMERICAN COLLEGE OF CARDIOLOGY, 2008, 52 (21) :1724-1732
[7]  
Chawla NV., 2004, ACM SIGKDD EXPLORATI, V6, P1, DOI DOI 10.1145/1007730.1007733
[8]   SUPPORT-VECTOR NETWORKS [J].
CORTES, C ;
VAPNIK, V .
MACHINE LEARNING, 1995, 20 (03) :273-297
[9]   Automatic quantification and characterization of coronary atherosclerosis with computed tomography coronary angiography: cross-correlation with intravascular ultrasound virtual histology [J].
de Graaf, Michiel A. ;
Broersen, Alexander ;
Kitslaar, Pieter H. ;
Roos, Cornelis J. ;
Dijkstra, Jouke ;
Lelieveldt, Boudewijn P. F. ;
Jukema, J. Wouter ;
Schalij, Martin J. ;
Delgado, Victoria ;
Bax, Jeroen J. ;
Reiber, Johan H. C. ;
Scholte, Arthur J. .
INTERNATIONAL JOURNAL OF CARDIOVASCULAR IMAGING, 2013, 29 (05) :1177-1190
[10]   COMPARING THE AREAS UNDER 2 OR MORE CORRELATED RECEIVER OPERATING CHARACTERISTIC CURVES - A NONPARAMETRIC APPROACH [J].
DELONG, ER ;
DELONG, DM ;
CLARKEPEARSON, DI .
BIOMETRICS, 1988, 44 (03) :837-845