STABILITY AND HOPF BIFURCATIONS IN AN INVERTED PENDULUM

被引:90
|
作者
BLACKBURN, JA
SMITH, HJT
GRONBECHJENSEN, N
机构
[1] UNIV WATERLOO,DEPT PHYS,WATERLOO N2L 3G1,ONTARIO,CANADA
[2] TECH UNIV DENMARK,PHYS LAB 1,DK-2800 LYNGBY,DENMARK
关键词
D O I
10.1119/1.17011
中图分类号
G40 [教育学];
学科分类号
040101 ; 120403 ;
摘要
The inverted state of a simple pendulum is a configuration of unstable equilibrium. This instability may be removed if the pivot is harmonically displaced up and down with appropriate frequency and amplitude. Numerical simulations are employed to investigate the stable domains of the system. The associated basins of attraction, extracted by interpolated cell mapping, are seen to be fractal. Loss of stability at high excitation amplitudes is observed to follow a Hopf bifurcation.
引用
收藏
页码:903 / 908
页数:6
相关论文
共 50 条
  • [1] STABILITY AND HOPF BIFURCATIONS IN AN INVERTED PENDULUM, (VOL 60, PG 903, 1992)
    BLACKBURN, JA
    SMITH, HJT
    GRONBECHJENSEN, N
    AMERICAN JOURNAL OF PHYSICS, 1993, 61 (05) : 475 - 475
  • [2] Stability and Hopf bifurcation in an inverted pendulum with delayed feedback control
    Rui Yang
    Yahong Peng
    Yongli Song
    Nonlinear Dynamics, 2013, 73 : 737 - 749
  • [3] Stability and Hopf bifurcation in an inverted pendulum with delayed feedback control
    Yang, Rui
    Peng, Yahong
    Song, Yongli
    NONLINEAR DYNAMICS, 2013, 73 (1-2) : 737 - 749
  • [4] Bifurcations and transitions to chaos in an inverted pendulum
    Kim, SY
    Hu, BB
    PHYSICAL REVIEW E, 1998, 58 (03): : 3028 - 3035
  • [5] Stability of singular Hopf bifurcations
    Yang, LJ
    Zeng, XW
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2004, 206 (01) : 30 - 54
  • [6] On the stability of HOPF bifurcations for maps
    D'Amico, MB
    Paolini, EE
    Moiola, JL
    PROCEEDINGS OF THE 2001 WORKSHOP ON NONLINEAR DYNAMICS OF ELECTRONIC SYSTEMS, 2001, : 209 - 212
  • [7] INVERTED PENDULUM AND BIPED STABILITY
    HEMAMI, H
    GOLLIDAY, CL
    MATHEMATICAL BIOSCIENCES, 1977, 34 (1-2) : 95 - 110
  • [8] Subharmonic bifurcations and chaotic motions for a class of inverted pendulum system
    Zhou, Liangqiang
    Liu, Shanshan
    Chen, Fangqi
    CHAOS SOLITONS & FRACTALS, 2017, 99 : 270 - 277
  • [9] STABILITY OF THE INVERTED PENDULUM - A TOPOLOGICAL EXPLANATION
    LEVI, M
    SIAM REVIEW, 1988, 30 (04) : 639 - 644
  • [10] Stability of the inverted pendulum - a topological explanation
    Levi, Mark
    SIAM Review, 1988, 30 (04): : 639 - 644