New Approach for Numerical Solution of the One-Dimensional Bratu Equation

被引:0
作者
Zarebnia, Mohammad [1 ]
Sarvari, Zahra [1 ]
机构
[1] Univ Mohaghegh Ardabili, Fac Math Sci, Ardebil 5619911367, Iran
来源
THAI JOURNAL OF MATHEMATICS | 2013年 / 11卷 / 03期
关键词
numerical method; parametric spline; convergence analysis; Bratu's problem;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, parametric cubic spline method is presented for solving Bratus problem. The convergence analysis of the presented method is discussed. The method is illustrated with two numerical examples and the results show that the method converges rapidly and approximates the exact solution very accurately.
引用
收藏
页码:611 / 621
页数:11
相关论文
共 23 条
[1]   New perturbation-iteration solutions for Bratu-type equations [J].
Aksoy, Yigit ;
Pakdemirli, Mehmet .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2010, 59 (08) :2802-2808
[2]  
ASCHER U, 1995, NUMERICAL SOLUTION B
[3]  
Boyd J. P., 1986, Journal of Scientific Computing, V1, P183, DOI 10.1007/BF01061392
[4]   One-point pseudospectral collocation for the one-dimensional Bratu equation [J].
Boyd, John P. .
APPLIED MATHEMATICS AND COMPUTATION, 2011, 217 (12) :5553-5565
[5]   Chebyshev polynomial expansions for simultaneous approximation of two branches of a function with application to the one-dimensional Bratu equation [J].
Boyd, JP .
APPLIED MATHEMATICS AND COMPUTATION, 2003, 143 (2-3) :189-200
[6]   Application of a Mickens finite-difference scheme to the cylindrical Bratu-Gelfand problem [J].
Buckmire, R .
NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 2004, 20 (03) :327-337
[7]   Investigations of nonstandard, Mickens-type, finite-difference schemes for singular boundary value problems in cylindrical or spherical coordinates [J].
Buckmire, R .
NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 2003, 19 (03) :380-398
[8]   B-spline method for solving Bratu's problem [J].
Caglar, Hikmet ;
Caglar, Nazan ;
Ozer, Mehmet ;
Valaristos, Antonios ;
Anagnostopoulos, Antonios N. .
INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 2010, 87 (08) :1885-1891
[9]  
Datta B. N., 1995, NUMERICAL LINEAR ALG
[10]   An algorithm for solving boundary value problems [J].
Deeba, E ;
Khuri, SA ;
Xie, SS .
JOURNAL OF COMPUTATIONAL PHYSICS, 2000, 159 (02) :125-138