LP BOUNDS FOR SPECTRAL MULTIPLIERS ON NILPOTENT GROUPS

被引:143
作者
CHRIST, M
机构
关键词
SPECTRAL MULTIPLIER; NILPOTENT LIE GROUP; SUBELLIPTICITY; HEAT KERNEL;
D O I
10.2307/2001877
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A criterion is given for the L(p) boundedness of a class of spectral multiplier operators associated to left-invariant, homogeneous subelliptic second-order differential operators on nilpotent Lie groups, generalizing a theorem of Hormander for radial Fourier multipliers on Euclidean space. The order of differentiability required is half the homogeneous dimension of the group, improving previous results in the same direction.
引用
收藏
页码:73 / 81
页数:9
相关论文
共 15 条
[1]   THE WEAK TYPE-L1 CONVERGENCE OF EIGENFUNCTION-EXPANSIONS FOR PSEUDODIFFERENTIAL-OPERATORS [J].
CHRIST, FM ;
SOGGE, CD .
INVENTIONES MATHEMATICAE, 1988, 94 (02) :421-453
[2]   EXPLICIT CONSTANTS FOR GAUSSIAN UPPER-BOUNDS ON HEAT KERNELS [J].
DAVIES, EB .
AMERICAN JOURNAL OF MATHEMATICS, 1987, 109 (02) :319-333
[3]  
Folland GB., 1982, HARDY SPACES HOMOGEN
[4]   ESTIMATES FOR TRANSLATION INVARIANT OPERATORS IN LP SPACES [J].
HORMANDER, L .
ACTA MATHEMATICA, 1960, 104 (1-2) :93-140
[5]   ALMOST EVERYWHERE SUMMABILITY ON NILMANIFOLDS [J].
HULANICKI, A ;
JENKINS, JW .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1983, 278 (02) :703-715
[6]   ESTIMATES FOR THE HEAT KERNEL FOR A SUM OF SQUARES OF VECTOR-FIELDS [J].
JERISON, DS ;
SANCHEZCALLE, A .
INDIANA UNIVERSITY MATHEMATICS JOURNAL, 1986, 35 (04) :835-854
[7]   LONG-TIME ESTIMATES FOR THE HEAT KERNEL ASSOCIATED WITH A UNIFORMLY SUBELLIPTIC SYMMETRIC 2ND-ORDER OPERATOR [J].
KUSUOKA, S ;
STROOCK, D .
ANNALS OF MATHEMATICS, 1988, 127 (01) :165-189
[8]  
KUSUOKA S., 1987, J FAC SCI U TOKYO 1A, VA34, P391
[9]  
Mauceri G., 1990, REV MAT IBEROAM, V6, P141
[10]  
Melrose R., 1986, HYPERBOLIC EQUATIONS, P181