Investigating the Effects of Imputation Methods for Modelling Gene Networks Using a Dynamic Bayesian Network from Gene Expression Data

被引:0
作者
Chai, Lian En [1 ]
Law, Chow Kuan [1 ]
Mohamad, Mohd Saberi [1 ]
Chong, Chuii Khim [1 ]
Choon, Yee Wen [1 ]
Deris, Safaai [1 ]
Illias, Rosli Md [2 ]
机构
[1] Univ Teknol Malaysia, Fac Comp, Artificial Intelligence & Bioinformat Res Grp, Skudai 81310, Johor, Malaysia
[2] Univ Teknol Malaysia, Fac Chem Engn, Dept Bioproc Engn, Skudai 81310, Johor, Malaysia
来源
MALAYSIAN JOURNAL OF MEDICAL SCIENCES | 2014年 / 21卷 / 02期
关键词
Bayesian method; DNA microarrays; gene expression; gene regulatory networks; gene expression regulation;
D O I
暂无
中图分类号
R-3 [医学研究方法]; R3 [基础医学];
学科分类号
1001 ;
摘要
Background: Gene expression data often contain missing expression values. Therefore, several imputation methods have been applied to solve the missing values, which include k-nearest neighbour (kNN), local least squares (LLS), and Bayesian principal component analysis (BPCA). However, the effects of these imputation methods on the modelling of gene regulatory networks from gene expression data have rarely been investigated and analysed using a dynamic Bayesian network (DBN). Methods: In the present study, we separately imputed datasets of the Escherichia coli S. O. S. DNA repair pathway and the Saccharomyces cerevisiae cell cycle pathway with kNN, LLS, and BPCA, and subsequently used these to generate gene regulatory networks (GRNs) using a discrete DBN. We made comparisons on the basis of previous studies in order to select the gene network with the least error. Results: We found that BPCA and LLS performed better on larger networks (based on the S. cerevisiae dataset), whereas kNN performed better on smaller networks (based on the E. coli dataset). Conclusion: The results suggest that the performance of each imputation method is dependent on the size of the dataset, and this subsequently affects the modelling of the resultant GRNs using a DBN. In addition, on the basis of these results, a DBN has the capacity to discover potential edges, as well as display interactions, between genes.
引用
收藏
页码:20 / 27
页数:8
相关论文
共 13 条
[1]  
Dejori M., 2002, ANALYZING GENE EXPRE
[2]   Missing value estimation for DNA microarray gene expression data: local least squares imputation [J].
Kim, H ;
Golub, GH ;
Park, H .
BIOINFORMATICS, 2005, 21 (02) :187-198
[3]  
Kim Sun Yong, 2003, Briefings in Bioinformatics, V4, P228, DOI 10.1093/bib/4.3.228
[4]   A Bayesian missing value estimation method for gene expression profile data [J].
Oba, S ;
Sato, M ;
Takemasa, I ;
Monden, M ;
Matsubara, K ;
Ishii, S .
BIOINFORMATICS, 2003, 19 (16) :2088-2096
[5]   Gaussian mixture clustering and imputation of microarray data [J].
Ouyang, M ;
Welsh, WJ ;
Georgopoulos, P .
BIOINFORMATICS, 2004, 20 (06) :917-923
[6]   Gene networks inference using dynamic Bayesian networks [J].
Perrin, Bruno-Edouard ;
Ralaivola, Liva ;
Mazurie, Aurelien ;
Bottani, Samuele ;
Mallet, Jacques ;
d'Alche-Buc, Florence .
BIOINFORMATICS, 2003, 19 :II138-II148
[7]  
Radman M., 1975, BASIC LIFE SCIE, V5A, P255
[8]   Assigning numbers to the arrows: Parameterizing a gene regulation network by using accurate expression kinetics [J].
Ronen, M ;
Rosenberg, R ;
Shraiman, BI ;
Alon, U .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2002, 99 (16) :10555-10560
[9]   Collateral missing value imputation: a new robust missing value estimation algorithm for microarray data [J].
Sehgal, MSB ;
Gondal, I ;
Dooley, LS .
BIOINFORMATICS, 2005, 21 (10) :2417-2423
[10]   Comprehensive identification of cell cycle-regulated genes of the yeast Saccharomyces cerevisiae by microarray hybridization [J].
Spellman, PT ;
Sherlock, G ;
Zhang, MQ ;
Iyer, VR ;
Anders, K ;
Eisen, MB ;
Brown, PO ;
Botstein, D ;
Futcher, B .
MOLECULAR BIOLOGY OF THE CELL, 1998, 9 (12) :3273-3297