共 5 条
- [1] PROJECTIVE CURVATURE TENSOR ON GENERALIZED (kappa, mu)-CONTACT METRIC MANIFOLDS FACTA UNIVERSITATIS-SERIES MATHEMATICS AND INFORMATICS, 2015, 30 (02): : 225 - 233
- [2] E-BOCHNER CURVATURE TENSOR ON (kappa, mu)-CONTACT METRIC MANIFOLDS INTERNATIONAL ELECTRONIC JOURNAL OF GEOMETRY, 2014, 7 (01): : 143 - 153
- [3] GENERALIZED ((kappa)over-tilde not equal -1, (mu)over-tilde)-PARACONTACT METRIC MANIFOLDS WITH xi((mu)over-tilde) = 0 INTERNATIONAL ELECTRONIC JOURNAL OF GEOMETRY, 2015, 8 (01): : 77 - 93
- [4] \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(\kappa ,\mu ,\upsilon =const.)$$\end{document}-contact metric manifolds with \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\xi (I_{M})=0$$\end{document} Beiträge zur Algebra und Geometrie / Contributions to Algebra and Geometry, 2014, 55 (1): : 43 - 58
- [5] The curvature tensor of (κ,μ,ν)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(\kappa ,\mu ,\nu )$$\end{document}-contact metric manifolds Monatshefte für Mathematik, 2015, 177 (3) : 331 - 344