PERMEATION OF BOTH CATIONS AND ANIONS THROUGH A SINGLE CLASS OF ATP-ACTIVATED ION CHANNELS IN DEVELOPING CHICK SKELETAL-MUSCLE

被引:56
作者
THOMAS, SA
HUME, RI
机构
[1] Department of Biology, University of Michigan, Ann Arbor, MI, 48109, Natural Science Building
关键词
D O I
10.1085/jgp.95.4.569
中图分类号
Q4 [生理学];
学科分类号
071003 ;
摘要
Micromolar concentrations of extracellular adenosine 5'-triphosphate (ATP) elicit a rapid excitatory response in developing chick skeletal muscle. Excitation is the result of a simultaneous increase in membrane permeability to sodium, potassium, and chloride ions. In the present study we quantify the selectivity of the ATP response, and provide evidence that a single class of ATP-activated ion channels conducts both cations and anions. Experiments were performed on myoballs using the whole-cell patch-clamp technique. We estimated permeability ratios by measuring the shift in reversal potential when one ion was substituted for another. We found that monovalent cations, divalent cations, and monovalent anions all permeate the membrane during the ATP response, and that there was only moderate selectivity between many of these ions. Calcium was the most permeant ion tested. To determine if ATP activates a single class of channels that conducts both cations and anions, or if ATP activates separate classes of cation and anion channels, we analyzed the fluctuations about the mean current induced by ATP. Ionic conditions were arranged so that the reversal potential for cations was +50 mV and the reversal potential for anions was -50 mV. Under these conditions, if ATP activates a single class of channels, ATP should not evoke an increase in noise at the reversal potential of the ATP current. However, if ATP activates separate classes of cation and anion channels, ATP should evoke a significant increase in noise at the reversal potential of the ATP current. At both +40 and -50 mV ATP elicited a clear increase in noise, but at the reversal potential of the ATP current (-5 mV), no increase in noise above background was seen. These results indicate that there is only a single class of excitatory ATP-activated channels, which do not select by charge. Based on analysis of the noise spectrum, the conductance of individual channels is estimated to be 0.2-0.4 pS. © 1990, Rockefeller University Press., All rights reserved.
引用
收藏
页码:569 / 590
页数:22
相关论文
共 32 条
[1]   THE PERMEABILITY OF ENDPLATE CHANNELS TO MONO-VALENT AND DIVALENT METAL-CATIONS [J].
ADAMS, DJ ;
DWYER, TM ;
HILLE, B .
JOURNAL OF GENERAL PHYSIOLOGY, 1980, 75 (05) :493-510
[2]   VOLTAGE CLAMP ANALYSIS OF ACETYLCHOLINE PRODUCED END-PLAT CURRENT FLUCTUATIONS AT FROG NEUROMUSCULAR-JUNCTION [J].
ANDERSON, CR ;
STEVENS, CF .
JOURNAL OF PHYSIOLOGY-LONDON, 1973, 235 (03) :655-691
[3]  
Bendat JS, 1986, RANDOM DATA ANAL MEA, P361
[4]   A NOVEL RECEPTOR-OPERATED CA-2+-PERMEABLE CHANNEL ACTIVATED BY ATP IN SMOOTH-MUSCLE [J].
BENHAM, CD ;
TSIEN, RW .
NATURE, 1987, 328 (6127) :275-278
[5]   SINGLE VOLTAGE-DEPENDENT CHLORIDE-SELECTIVE CHANNELS OF LARGE CONDUCTANCE IN CULTURED RAT MUSCLE [J].
BLATZ, AL ;
MAGLEBY, KL .
BIOPHYSICAL JOURNAL, 1983, 43 (02) :237-241
[6]   SINGLE CHLORIDE-SELECTIVE CHANNELS ACTIVE AT RESTING MEMBRANE-POTENTIALS IN CULTURED RAT SKELETAL-MUSCLE [J].
BLATZ, AL ;
MAGLEBY, KL .
BIOPHYSICAL JOURNAL, 1985, 47 (01) :119-123
[7]  
BODOIA RD, 1985, J PHYSIOL-LONDON, V367, P183, DOI 10.1113/jphysiol.1985.sp015820
[8]   MECHANISM OF ANION PERMEATION THROUGH CHANNELS GATED BY GLYCINE AND GAMMA-AMINOBUTYRIC-ACID IN MOUSE CULTURED SPINAL NEURONS [J].
BORMANN, J ;
HAMILL, OP ;
SAKMANN, B .
JOURNAL OF PHYSIOLOGY-LONDON, 1987, 385 :243-286
[9]   ENDPLATE CURRENT FLUCTUATIONS REVEAL ONLY ONE CHANNEL TYPE AT FROG NEUROMUSCULAR-JUNCTION [J].
DIONNE, VE ;
RUFF, RL .
NATURE, 1977, 266 (5599) :263-265
[10]   PERMEABILITY PROPERTIES OF CHICK MYOTUBE ACETYLCHOLINE-ACTIVATED CHANNELS [J].
DWYER, TM ;
FARLEY, JM .
BIOPHYSICAL JOURNAL, 1984, 45 (03) :529-539