LARGE DEVIATION PRINCIPLE FOR INTEGRAL FUNCTIONALS OF A MARKOV PROCESS

被引:0
作者
Logachov, Artem Vasil'evich [1 ]
Prokopenko, Evgeny Igorevich [2 ]
机构
[1] Novosibirsk State Univ, 2 Pirogova Str, Novosibirsk 630090, Russia
[2] Sobolev Inst Math, Novosibirsk 630090, Russia
来源
SIBERIAN ELECTRONIC MATHEMATICAL REPORTS-SIBIRSKIE ELEKTRONNYE MATEMATICHESKIE IZVESTIYA | 2015年 / 12卷
关键词
Large deviations; Markov process; telegraph signal process;
D O I
10.17377/semi.2015.12.051
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper it was obtained the large deviation principle for the sequence of random processes Y-n(t) = 1/n integral(nt)(0) h(X(u))du, where X (u) is a homogeneous Markov process, h(x) is a continuous function, t is an element of [0, 1]. In particular, it was proved the large deviation principle for the integral of the telegraph signal process.
引用
收藏
页码:639 / 650
页数:12
相关论文
共 15 条
[1]  
[Anonymous], FLUCTUATIONS DYNAMIC
[2]  
Billingsley P., 1977, CONVERGENCE PROBABIL
[3]  
Borovkov A.A., 2011, SIBERIAN MATH J, V52, P777
[4]  
Dembo A., 2010, STOCHASTIC MODELLING, V38
[5]   ASYMPTOTIC EVALUATION OF CERTAIN MARKOV PROCESS EXPECTATIONS FOR LARGE TIME, I [J].
DONSKER, MD ;
VARADHAN, SRS .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1975, 28 (01) :1-47
[6]  
Feng J., 2006, LARGE DEVIATIONS STO, V131
[8]   LARGE DEVIATION LOWER BOUNDS FOR ADDITIVE-FUNCTIONALS OF MARKOV-PROCESSES [J].
JAIN, NC .
ANNALS OF PROBABILITY, 1990, 18 (03) :1071-1098
[9]  
LIPTSER R, 1999, ELECTRON J PROBAB, V4, P1
[10]   Large deviations for integrals of telegraph processes type [J].
Logachov, Artem V. ;
Makhno, Sergey Y. .
RANDOM OPERATORS AND STOCHASTIC EQUATIONS, 2014, 22 (01) :43-52