THE PROBLEM OF THE SELECTION OF AN A-POSTERIORI ERROR INDICATOR BASED ON SMOOTHING TECHNIQUES

被引:36
作者
BABUSKA, IM
RODRIGUEZ, R
机构
[1] UNIV MARYLAND, DEPT MATH, COLL PK, MD 20742 USA
[2] NATL UNIV LA PLATA, FAC CIENCIAS EXACTAS, DEPT MATEMAT, RA-1900 LA PLATA, ARGENTINA
关键词
D O I
10.1002/nme.1620360402
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
This paper addresses the problem of assessing the quality of an a posteriori error estimate of a finite element solution. An error estimate based on local L2-projections is analysed in the case of translation-invariant meshes. It is shown that for general meshes this technique does not lead to an asymptotically exact estimator. The problem is analysed in detail in the one-dimensional setting. It is shown that an asymptotically exact estimator is not the optimal one when the solution is not sufficiently smooth. An optimal estimator for adaptively constructed meshes is given. Finally, a general mathematical framework for the quality assessment of estimators is introduced.
引用
收藏
页码:539 / 567
页数:29
相关论文
共 31 条
[1]   ERROR ESTIMATES FOR ADAPTIVE FINITE-ELEMENT COMPUTATIONS [J].
BABUSKA, I ;
RHEINBOLDT, WC .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1978, 15 (04) :736-754
[2]   REGULARITY OF THE SOLUTION OF ELLIPTIC PROBLEMS WITH PIECEWISE ANALYTIC DATA .1. BOUNDARY-VALUE PROBLEMS FOR LINEAR ELLIPTIC EQUATION OF 2ND ORDER [J].
BABUSKA, I ;
GUO, BQ .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 1988, 19 (01) :172-203
[3]   REGULARITY OF THE SOLUTION OF ELLIPTIC PROBLEMS WITH PIECEWISE ANALYTIC DATA, .2. THE TRACE SPACES AND APPLICATION TO THE BOUNDARY-VALUE PROBLEMS WITH NONHOMOGENEOUS BOUNDARY-CONDITIONS [J].
BABUSKA, I ;
GUO, BQ .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 1989, 20 (04) :763-781
[4]   A-POSTERIORI ERROR ESTIMATES FOR FINITE-ELEMENT METHOD [J].
BABUSKA, I ;
RHEINBOLDT, WC .
INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 1978, 12 (10) :1597-1615
[5]  
Babuska I., 1980, Computational Methods in Nonlinear Mechanics. Proceedings of the TICOM Second International Conference, P67
[6]   A FEEDBACK FINITE-ELEMENT METHOD WITH A POSTERIORI ERROR ESTIMATION .1. THE FINITE-ELEMENT METHOD AND SOME BASIC PROPERTIES OF THE A POSTERIORI ERROR ESTIMATOR [J].
BABUSKA, I ;
MILLER, A .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 1987, 61 (01) :1-40
[7]   ADAPTIVE MULTIPLE-LEVEL H-REFINEMENT IN AUTOMATED FINITE-ELEMENT ANALYSES [J].
BAEHMANN, PL ;
SHEPHARD, MS .
ENGINEERING WITH COMPUTERS, 1989, 5 (3-4) :235-247
[8]  
BAEHMANN PL, SCOREC141900 RENSS P
[9]  
BANK E, 1990, PLTMG SOFTWARE PACKA
[10]  
BANK RE, 1985, MATH COMPUT, V44, P283, DOI 10.1090/S0025-5718-1985-0777265-X