MATRIX POLYNOMIAL SOLUTIONS OF TANGENTIAL LAGRANGE-SYLVESTER INTERPOLATION CONDITIONS OF LOW MCMILLAN DEGREE

被引:7
作者
BALL, JA
KANG, J
机构
[1] Department of Mathematics, Virginia Tech, Blacksburg
基金
美国国家科学基金会;
关键词
D O I
10.1016/0024-3795(90)90145-3
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A matrix polynomial of Mcmillan degree n-1 which satisfies n tangential Lagrange interpolation conditions is constructed explicitly in realization form. Analogous results are given for more general bitangential Lagrange-Sylvester interpolation conditions. A corollary is a type of Euclidean algorithm for matrix polynomials and McMillan degree. The main tool is the recent parametrization of all matrix polynomial solutions of a set of Lagrange-Sylvester interpolation conditions due to Ball, Gohberg, and Rodman. © 1990.
引用
收藏
页码:699 / 746
页数:48
相关论文
共 13 条
[1]  
Ball J.A., 1990, INTERPOLATION RATION
[2]  
BALL JA, 1988, TOPICS INTERPOLATION, P1
[3]  
BALL JA, IN PRESS P SYMPOS PU
[4]  
BALL JA, IN PRESS SIMULTANEOU
[5]  
Bart H., 1979, MINIMAL FACTORIZATIO
[6]  
DAVIS P. J., 1975, INTERPOLATION APPROX, DOI 10.1112/jlms/s1-39.1.568
[7]   AN INVERSE SPECTRAL PROBLEM FOR RATIONAL MATRIX FUNCTIONS AND MINIMAL DIVISIBILITY [J].
GOHBERG, I ;
KAASHOEK, MA .
INTEGRAL EQUATIONS AND OPERATOR THEORY, 1987, 10 (03) :437-465
[8]   COMMON MULTIPLES AND COMMON DIVISORS OF MATRIX POLYNOMIALS .1. SPECTRAL METHOD [J].
GOHBERG, I ;
KAASHOEK, MA ;
LERER, L ;
RODMAN, L .
INDIANA UNIVERSITY MATHEMATICS JOURNAL, 1981, 30 (03) :321-356
[9]  
Gohberg I., 1982, MATRIX POLYNOMIALS
[10]  
GOHBERG I, 1988, TOPICS OPTERATOR THE, P181