A SYMPLECTIC INTEGRATION ALGORITHM FOR SEPARABLE HAMILTONIAN FUNCTIONS

被引:182
作者
CANDY, J
ROZMUS, W
机构
[1] Department of Physics, University of Alberta, Edmonton
关键词
D O I
10.1016/0021-9991(91)90299-Z
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
We derive an algorithm to numerically integrate differential equations derivable from a separable Hamiltonian function. This symplectic algorithm is accurate to fourth order in the time step and preserves exactly the Poincaré-Cartan integral invariants associated with the topology of the phase flow. We compare the efficiency and accuracy of this method to that of existing integrators (both symplectic and non-symplectic) by integrating the equations of motion corresponding to a nonlinear pendulum, a particle in the field of a standing wave, and a harmonic oscillator perturbed by a plane wave. © 1991.
引用
收藏
页码:230 / 256
页数:27
相关论文
共 11 条
[1]  
Arnold V.I., 1989, MATH METHODS CLASSIC, P201
[2]  
CHANNELL PJ, 1988, LAUR881828 LOS AL NA
[3]  
CHERNIKOV AA, 1986, PHYS LETT A, V122, P39
[4]  
Chirikov BV, 1979, PHYS REP, V52, P265
[5]  
MILNE WE, 1970, NUMERICAL SOLUTION D, P72
[6]  
MURAKAMI S, 1988, PHYS D, V32, P259
[7]  
RALSTON A, 1965, 1 COURSE NUMERICAL A, P200
[8]   A CANONICAL INTEGRATION TECHNIQUE [J].
RUTH, RD .
IEEE TRANSACTIONS ON NUCLEAR SCIENCE, 1983, 30 (04) :2669-2671
[9]  
SANDERS JA, 1985, AVERAGING METHODS NO, P119
[10]  
Schmidt G., 1982, Comments on Plasma Physics and Controlled Fusion, V7, P87