A SYMPLECTIC INTEGRATION ALGORITHM FOR SEPARABLE HAMILTONIAN FUNCTIONS

被引:180
作者
CANDY, J
ROZMUS, W
机构
[1] Department of Physics, University of Alberta, Edmonton
关键词
D O I
10.1016/0021-9991(91)90299-Z
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
We derive an algorithm to numerically integrate differential equations derivable from a separable Hamiltonian function. This symplectic algorithm is accurate to fourth order in the time step and preserves exactly the Poincaré-Cartan integral invariants associated with the topology of the phase flow. We compare the efficiency and accuracy of this method to that of existing integrators (both symplectic and non-symplectic) by integrating the equations of motion corresponding to a nonlinear pendulum, a particle in the field of a standing wave, and a harmonic oscillator perturbed by a plane wave. © 1991.
引用
收藏
页码:230 / 256
页数:27
相关论文
共 11 条
  • [1] Arnold V.I., 1989, MATH METHODS CLASSIC, P201
  • [2] CHANNELL PJ, 1988, LAUR881828 LOS AL NA
  • [3] CHERNIKOV AA, 1986, PHYS LETT A, V122, P39
  • [4] Chirikov BV, 1979, PHYS REP, V52, P265
  • [5] MILNE WE, 1970, NUMERICAL SOLUTION D, P72
  • [6] MURAKAMI S, 1988, PHYS D, V32, P259
  • [7] RALSTON A, 1965, 1 COURSE NUMERICAL A, P200
  • [8] A CANONICAL INTEGRATION TECHNIQUE
    RUTH, RD
    [J]. IEEE TRANSACTIONS ON NUCLEAR SCIENCE, 1983, 30 (04) : 2669 - 2671
  • [9] SANDERS JA, 1985, AVERAGING METHODS NO, P119
  • [10] Schmidt G., 1982, Comments on Plasma Physics and Controlled Fusion, V7, P87