A FAST ALGORITHM FOR PROVING TERMINATING HYPERGEOMETRIC IDENTITIES

被引:136
作者
ZEILBERGER, D
机构
[1] Department of Mathematics, Drexel University, Philadelphia
关键词
D O I
10.1016/0012-365X(90)90120-7
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
An algorithm for proving terminating hypergeometric identities, and thus binomial coefficients identities, is presented. It is based upon Gosper's algorithm for indefinite hypergeometric summation. A MAPLE program implementing this algorithm succeeded in proving almost all known identities. Hitherto the proof of such identities was an exclusively human endeavor. © 1990.
引用
收藏
页码:207 / 211
页数:5
相关论文
共 17 条
[1]  
Andrews G.E., 1986, CBMS SERIES, V66
[2]  
ASKEY R, RAMANUJAN HYPERGEOME
[3]  
BAILEY WN, 1935, GENERALIZED HYPERGEO
[4]  
Bernshtein I.N., 1971, FUNCT ANAL APPL+, V5, P1, DOI 10.1007/BF01075841
[5]  
CARTIER P, 1969, LECTURE NOTES MATH, V85
[6]   HOW THE GRINCH STOLE MATHEMATICS [J].
CIPRA, BA .
SCIENCE, 1989, 245 (4918) :595-595
[7]  
GASPER G, IDEFINITE BIBASIC SU
[8]   STRANGE EVALUATIONS OF HYPERGEOMETRIC-SERIES [J].
GESSEL, I ;
STANTON, D .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 1982, 13 (02) :295-308
[10]  
Rainville E. D., 1960, SPECIAL FUNCTIONS