STABILITY IN TOTALLY NONLINEAR NEUTRAL DYNAMIC EQUATIONS ON TIME SCALES

被引:0
作者
Belaid, Malik [1 ]
Ardjouni, Abdelouaheb [1 ,2 ]
Djoudi, Ahcene [1 ]
机构
[1] Univ Souk Ahras, Dept Math & Informat, POB 1553, Souk Ahras 41000, Croatia
[2] Univ Annaba, Appl Math Lab, Fac Sci, Dept Math, POB 12, Annaba 23000, Algeria
来源
INTERNATIONAL JOURNAL OF ANALYSIS AND APPLICATIONS | 2016年 / 11卷 / 02期
关键词
Fixed points; neutral dynamic equations; stability; time scales;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let U be a time scale which is unbounded above and below and such that 0 is an element of T. Let id - tau : [0, infinity) boolean AND T -> T be such that (id - tau) ([0, infinity) boolean AND T) is a time scale. We use the Krasnoselskii-Burton's fixed point theorem to obtain stability results about the zero solution for the following totally nonlinear neutral dynamic equation with variable delay x(Delta)(t) = -a (t) h (x(sigma) (t)) + c (t) x (Delta) over tilde (t - tau (t)) + b (t) G (x (t), x (t - T (t)), t is an element of [0, infinity) boolean AND T, where f(Delta) A is the Delta-derivative on U and f (Delta) over tilde is the Delta-derivative on (id - tau) (T). The results obtained here extend the work of Ardjouni, Derrardjia and Djoudi [2].
引用
收藏
页码:110 / 123
页数:14
相关论文
empty
未找到相关数据