FURTHER REDUCTION IN THE NUMBER OF INDEPENDENT ORDER CONDITIONS FOR SYMPLECTIC, EXPLICIT PARTITIONED RUNGE-KUTTA AND RUNGE-KUTTA-NYSTROM METHODS

被引:9
作者
CALVO, MP [1 ]
HAIRER, E [1 ]
机构
[1] UNIV GENEVA,DEPT MATH,CH-1211 GENEVA 24,SWITZERLAND
关键词
D O I
10.1016/0168-9274(95)00047-X
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We are concerned with symplectic Partitioned Runge-Kutta and Runge-Kutta-Nystrom methods for the numerical integration of Hamiltonian systems of ordinary differential equations. We show that for these methods, explicitness operates as a simplifying assumption for the study of the order conditions.
引用
收藏
页码:107 / 114
页数:8
相关论文
共 8 条
[1]  
ABIA L, 1993, MATH COMPUT, V60, P617, DOI 10.1090/S0025-5718-1993-1181328-1
[2]  
BUTCHER JC, 1982, NUMERICAL ANAL ORDIN
[3]   ORDER CONDITIONS FOR CANONICAL RUNGE-KUTTA-NYSTROM METHODS [J].
CALVO, MP ;
SANZSERNA, JM .
BIT, 1992, 32 (01) :131-142
[4]   THE DEVELOPMENT OF VARIABLE-STEP SYMPLECTIC INTEGRATORS, WITH APPLICATION TO THE 2-BODY PROBLEM [J].
CALVO, MP ;
SANZSERNA, JM .
SIAM JOURNAL ON SCIENTIFIC COMPUTING, 1993, 14 (04) :936-952
[5]  
Hairer E., 1993, SOLVING ORDINARY DIF, V2nd
[6]  
MCLACHLAN RI, IN PRESS SIAM J SCI
[7]   EXPLICIT CANONICAL METHODS FOR HAMILTONIAN-SYSTEMS [J].
OKUNBOR, D ;
SKEEL, RD .
MATHEMATICS OF COMPUTATION, 1992, 59 (200) :439-455
[8]  
Sanz-Serna J., 1994, NUMERICAL HAMILTONIA