Semianalytic Finite-Element Method in Dynamic Problems of Linear Fracture Mechanics

被引:2
作者
Bazhenov, V. A. [1 ,2 ]
Vabishchevich, M. O. [1 ]
Solodei, I. I. [1 ,2 ]
Chepurnaya, E. A. [1 ]
机构
[1] Kyiv Natl Univ Construct & Architecture, 31 Povitroflotsky Av, UA-03037 Kiev, Ukraine
[2] Sci Res Inst Struct Mech, 31 Povitroflotsky Av, UA-03037 Kiev, Ukraine
关键词
dynamics; crack; dynamic stress-intensity factor; J-integral; prismatic body; body of revolution; semianalytic finite-element method;
D O I
10.1007/s10778-018-0904-0
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
An effective approach to the simulation of crack-type fracture is developed based on the semi-analytical finite element method. Algorithms for determining the parameters of fracture strength for elastic bodies of revolution and prismatic bodies under non-stationary force loading of different intensity and duration are proposed. The energy approach based on the application of a special prismatic and ring finite elements with crack under dynamic loading are used to calculate the fracture parameters. The efficiency of the algorithms is estimated.
引用
收藏
页码:519 / 530
页数:12
相关论文
共 16 条
[1]  
ATLURI SN, 1986, COMPUTATIONAL METHOD
[2]  
Bathe XJ, 1976, NUMERICAL METHODS FI
[3]  
Bazhenov V. A., 2006, STRENGTH MAT THEORY, V79, P3
[4]  
BAZHENOV VA, 1993, SEMIANALYTIC FINITE
[5]  
BLOKH VI, 1964, THEORY ELASTICITY
[6]   Spatial Problems of the Fracture of Materials Loaded Along Cracks (Review) [J].
Bogdanov V.L. ;
Guz A.N. ;
Nazarenko V.M. .
International Applied Mechanics, 2015, 51 (05) :489-560
[7]  
Cherepanov GP, 1979, BRITTLE FRACTURE MEC
[8]  
Guz A. N., 1993, 4 VOLUME SERIES
[9]  
Kantor B. Ya., 1982, 171 IPMASH AN USSR
[10]   Numerical simulation of stress-strain state near crack tip in a compact tensile specimen [J].
Kotlyarenko, A. A. ;
Prach, T. A. ;
Kharchenko, V. V. ;
Chirkov, A. Yu. .
STRENGTH OF MATERIALS, 2009, 41 (01) :106-112