THE ZERO-DIVISOR GRAPH OF A COMMUTATIVE RING WITHOUT IDENTITY

被引:17
作者
Anderson, David F. [1 ]
Weber, Darrin [2 ]
机构
[1] Univ Tennessee, Dept Math, Knoxville, TN 37996 USA
[2] Univ Evansville, Dept Math, Evansville, IN 47722 USA
来源
INTERNATIONAL ELECTRONIC JOURNAL OF ALGEBRA | 2018年 / 23卷
关键词
Zero-divisor graph; commutative ring without identity;
D O I
10.24330/ieja.373663
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let R be a commutative ring. The zero-divisor graph of R is the (simple) graph Gamma(R) with vertices the nonzero zero-divisors of R, and two distinct vertices x and y are adjacent if and only if xy = 0. In this article, we investigate Gamma(R) when R does not have an identity, and we determine all such zero-divisor graphs with 14 or fewer vertices.
引用
收藏
页码:176 / 202
页数:27
相关论文
共 28 条
[1]  
Anderson D.F., 2017, GROUPS MODULES MODEL, P23
[2]  
Anderson D.F., 2011, COMMUTATIVE ALGEBRA, P23
[3]  
Anderson DF, 2008, HOUSTON J MATH, V34, P361
[4]   On the diameter and girth of a zero-divisor graph [J].
Anderson, David F. ;
Mulay, S. B. .
JOURNAL OF PURE AND APPLIED ALGEBRA, 2007, 210 (02) :543-550
[5]   Some remarks on the compressed zero-divisor graph [J].
Anderson, David F. ;
LaGrange, John D. .
JOURNAL OF ALGEBRA, 2016, 447 :297-321
[6]   Commutative Boolean monoids, reduced rings, and the compressed zero-divisor graph [J].
Anderson, David F. ;
LaGrange, John D. .
JOURNAL OF PURE AND APPLIED ALGEBRA, 2012, 216 (07) :1626-1636
[7]  
Anderson DD, 2000, SEMIGROUP FORUM, V60, P436
[8]   BECK COLORING OF A COMMUTATIVE RING [J].
ANDERSON, DD ;
NASEER, M .
JOURNAL OF ALGEBRA, 1993, 159 (02) :500-514
[9]   Zero-divisor graphs, von Neumann regular rings, and Boolean algebras [J].
Anderson, DF ;
Levy, R ;
Shapiro, J .
JOURNAL OF PURE AND APPLIED ALGEBRA, 2003, 180 (03) :221-241
[10]   The zero-divisor graph of a commutative ring [J].
Anderson, DF ;
Livingston, PS .
JOURNAL OF ALGEBRA, 1999, 217 (02) :434-447