EIGENVALUES VARIATION OF THE P-LAPLACIAN UNDER THE RICCI FLOW ON SM

被引:0
作者
Azami, Shahroud [1 ]
Razavi, Asadollah [2 ]
机构
[1] Imam Khomeini Int Univ, Fac Sci, Dept Math, Qazvin, Iran
[2] Amirkabir Univ Technol, Dept Math & Comp Sci, Tehran, Iran
关键词
Ricci flow; Finsler manifold; p-Laplace operator;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let (M, F) be a compact Finsler manifold. Studying the eigenvalues and eigenfunctions for the linear and nonlinear geometric operators is a known problem. In this paper we will consider the eigenvalue problem for the p-laplace operator for Sasakian metric acting on the space of functions on SM. We find the first variation formula for the eigenvalues of p -Laplacian on SM evolving by the Ricci flow on M and give some examples.
引用
收藏
页码:157 / 175
页数:19
相关论文
共 20 条
[1]   EXISTENCE AND UNIQUENESS FOR SOLUTION OF RICCI FLOW ON FINSLER MANIFOLDS [J].
Azami, Shahroud ;
Razavi, Asadollah .
INTERNATIONAL JOURNAL OF GEOMETRIC METHODS IN MODERN PHYSICS, 2013, 10 (03)
[2]  
Bao D, 2007, ADV STUD PURE MATH, V48, P19
[3]   A natural Finsler-Laplace operator [J].
Barthelme, Thomas .
ISRAEL JOURNAL OF MATHEMATICS, 2013, 196 (01) :375-412
[4]   Estimates on eigenvalues of Laplacian [J].
Cheng, QM ;
Yang, HC .
MATHEMATISCHE ANNALEN, 2005, 331 (02) :445-460
[5]  
Chow B., 2004, MATH SURVEYS MONOGRA, DOI 10.1090/surv/110
[6]  
Chow B., 2006, HAMILTONS RICCI FLOW, V77
[7]  
DETURCK DM, 1983, J DIFFER GEOM, V18, P157
[8]  
Friedan D., 1980, THESIS
[9]   COMMUTATOR BOUNDS FOR EIGENVALUES, WITH APPLICATIONS TO SPECTRAL GEOMETRY [J].
HARRELL, EM ;
MICHEL, PL .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 1994, 19 (11-12) :2037-2055
[10]   Ricci flow and black holes [J].
Headrick, Matthew ;
Wiseman, Toby .
CLASSICAL AND QUANTUM GRAVITY, 2006, 23 (23) :6683-6707