NONLINEAR DYNAMIC-RESPONSE OF ISOTROPIC THIN RECTANGULAR-PLATES ON ELASTIC FOUNDATIONS

被引:23
作者
DUMIR, PC
机构
[1] Applied Mechanics Department, Indian Institute of Technology Delhi, New Delhi, 110016, India
关键词
FOUNDATIONS - Elasticity - STRUCTURAL DESIGN - Dynamic Response;
D O I
10.1007/BF01173950
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
An approximate analytical solution of the large deflection dynamic response of isotropic thin rectangular plates resting on Winkler, Pasternak and nonlinear Winkler foundations is presented. Von Karman type governing equations in terms of the transverse deflection and stress function are employed. The deflection is approximated by a one term shape function satisfying the boundary conditions. The Galerkin's method is used to get the differential equation for the deflection at the center.
引用
收藏
页码:233 / 244
页数:12
相关论文
共 11 条
[1]  
Bathe K. J., 1976, NUMERICAL METHODS FI
[2]  
Chia C. Y., 1980, NONLINEAR ANAL PLATE
[3]   NON-LINEAR VIBRATIONS OF ELASTIC PLATES SUBJECTED TO TRANSIENT PRESSURE LOADING [J].
COLEBY, JR ;
MAZUMDAR, J .
JOURNAL OF SOUND AND VIBRATION, 1982, 80 (02) :193-201
[4]  
Datta S., 1976, International Journal of Non-Linear Mechanics, V11, P337, DOI 10.1016/0020-7462(76)90020-2
[5]  
DATTA S, 1975, DEFENCE SCI J, V25, P115
[6]   NONLINEAR DYNAMIC-RESPONSE OF RECTANGULAR-PLATES ON LINEAR ELASTIC-FOUNDATION [J].
NATH, Y ;
VARMA, KK ;
MAHRENHOLTZ, D .
COMPUTERS & STRUCTURES, 1986, 24 (03) :391-399
[7]   SOLUTION OF SOME BOUNDARY-VALUE PROBLEMS IN APPLIED MECHANICS BY COLLOCATION LEAST-SQUARE METHOD [J].
NG, SS ;
CHAN, MYT .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 1977, 11 (02) :137-150
[8]  
Niyogi A. K., 1973, International Journal of Solids and Structures, V9, P1133, DOI 10.1016/0020-7683(73)90020-6
[9]  
SINHA SN, 1963, J ENG MECH DIV AM SO, V1, P1
[10]  
Vlasov V.Z., 1966, ISR PROGRAM SCI TRAN