The stability of the bifunctional amylase/trypsin inhibitor from ragi (Indian finger millet, Eleusine coracana) has been studied by methods of circular dichroism, UV absorption and intrinsic fluorescence. The inhibitor is stable in 8 M urea and 6 M guanidine-HCI. In 150 mM NaCl, thermal denaturation does not occur up to 90-degrees-C. However, it is irreversibly denatured in 5 mM NaCl if heated over 73-degrees-C. The acidic denaturation is reversible in both high and low salt conditions, but it shows different behavior below pH 1.65 under similar salt conditions. The helical content is about 2-4% in the pH range of 7-9 at which the inhibitor is active maximally. The NaCl concentration does not have a significant effect on the secondary strucure elements. The beta-strand form does not show much variation under various conditions. Arg34-Leu35 is the reactive peptide bond in the trypsin-binding site. Trp and Tyr are involved in the binding with amylase. The bifunctional inhibitor represents the sum of individual inhibitors of trypsin and amylase.