Periodic solutions for a three species predator-prey system on time scales

被引:0
作者
Zhuang, Kejun [1 ]
机构
[1] Anhui Univ Finance & Econ, Sch Stat & Appl Math, Inst Appl Math, Bengbu 233030, Peoples R China
关键词
periodic solutions; time scale; coincidence degree; predator-prey system;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper investigates the existence of periodic solutions for an ecological model with two predators and one prey. Sufficient conditions are derived by using degree theory. Our results improve and extend previous results in the literature.
引用
收藏
页码:3 / 11
页数:9
相关论文
共 8 条
[1]  
Bohner M, 2003, DYNAMIC EQUATIONS TI
[2]   Existence of periodic solutions in predator-prey and competition dynamic systems [J].
Bohner, Martin ;
Fan, Meng ;
Zhang, Jimin .
NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2006, 7 (05) :1193-1204
[3]   Intraspecific interference and consumer-resource dynamics [J].
Cantrell, RS ;
Cosner, C ;
Ruan, SG .
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2004, 4 (03) :527-546
[4]  
Gaines R.E., 1977, COINCIDENCE DEGREE N, DOI [10.1007/BFb0089537, DOI 10.1007/BFB0089537]
[5]  
Hilger S., 1990, RESULTS MATH, V18, P18, DOI [DOI 10.1007/BF03323153, 10.1007/BF03323153]
[6]   Periodic solutions in non autonomous predator prey system with delays [J].
Lin, Guojian ;
Hong, Yiguang .
NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2009, 10 (03) :1589-1600
[7]   On a periodic predator-prey system with time delays on time scales [J].
Liu, Jie ;
Li, Yongkun ;
Zhao, Lili .
COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2009, 14 (08) :3432-3438
[8]  
Zhagn Bing-bing, 2007, Dongbei Shida Xuebao (Ziran Kexue Ban), V39, P1