In this work, a meshfree method is used to simulate ductile crack growth and propagation under finite deformation and large scale yielding conditions. A so-called parametric visibility condition and its related particle splitting procedure have been developed to automatically adapt the evolving strong continuity or fracture configuration due to an arbitrary crack growth in ductile materials. It is shown that the proposed meshfree crack adaption and reinterpolation procedure is versatile in numerical simulations, and it can capture some essential features of ductile fracture and ductile crack surface morphology, such as the rough zig-zag pattern of crack surface and the ductile crack front damage zone, which have been difficult to capture in previous numerical simulations.
机构:Department of Civil Engineering, Robert R. McCormick School of Engineering and Applied Science, Technological Institute, Northwestern University, Evanston, Illinois
BELYTSCHKO, T
;
LU, YY
论文数: 0引用数: 0
h-index: 0
机构:Department of Civil Engineering, Robert R. McCormick School of Engineering and Applied Science, Technological Institute, Northwestern University, Evanston, Illinois
LU, YY
;
GU, L
论文数: 0引用数: 0
h-index: 0
机构:Department of Civil Engineering, Robert R. McCormick School of Engineering and Applied Science, Technological Institute, Northwestern University, Evanston, Illinois
机构:Department of Civil Engineering, Robert R. McCormick School of Engineering and Applied Science, Technological Institute, Northwestern University, Evanston, Illinois
BELYTSCHKO, T
;
LU, YY
论文数: 0引用数: 0
h-index: 0
机构:Department of Civil Engineering, Robert R. McCormick School of Engineering and Applied Science, Technological Institute, Northwestern University, Evanston, Illinois
LU, YY
;
GU, L
论文数: 0引用数: 0
h-index: 0
机构:Department of Civil Engineering, Robert R. McCormick School of Engineering and Applied Science, Technological Institute, Northwestern University, Evanston, Illinois