AN INVERSE PROBLEM FOR TWO-DIMENSIONAL EQUATIONS OF FINDING THE THERMAL CONDUCTIVITY OF THE INITIAL DISTRIBUTION

被引:6
作者
Zaynullov, A. R. [1 ]
机构
[1] Bashkir State Univ, Sterlitamak Branch, Dept Math Anal, 49 Lenin Ave, Sterlitamak 453103, Russia
来源
VESTNIK SAMARSKOGO GOSUDARSTVENNOGO TEKHNICHESKOGO UNIVERSITETA-SERIYA-FIZIKO-MATEMATICHESKIYE NAUKI | 2015年 / 19卷 / 04期
基金
俄罗斯基础研究基金会;
关键词
heat equation; first initial-boundary value problem; inverse problem; spectral method; uniqueness; existence; integral equation;
D O I
10.14498/vsgtu1451
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The inverse problem of finding the initial distribution has been studied on the basis of formulas for the solution of the first initial-boundary value problem for the inhomogeneous two-dimentional heat equation. The uniqueness of the solution of the direct initial-boundary value problem has proved with the completeness of the eigenfunctions of the corresponding homogeneous Dirichlet problem for the Laplace operator. The existence theorem for solving direct initial boundary value problem has been proved. Inverse problem has been investigated on the basis of the solution of direct problem, a criterion for the uniqueness of the inverse problem of finding the initial distribution has been proved. The existence of the inverse problem solution has been equivalently reduced to Fredholm integral equation of the first kind.
引用
收藏
页码:667 / 679
页数:13
相关论文
共 12 条
[1]  
Denisov A. M, 1999, INVERSE ILL POSED PR, DOI [10.1515/9783110943252, DOI 10.1515/9783110943252]
[2]  
Godunov S. K, 1978, URAVNENIIA MATEMATIC
[3]  
Ivanov V. K, 2002, INVERSE ILL POSED PR, DOI [10.1515/9783110944822, DOI 10.1515/9783110944822]
[4]  
Koshlyakov N. S., 1964, DIFFERENTIAL EQUATIO
[5]  
Lavrent'ev M.M., 1986, TRANSLATIONS MATH MO, V64
[6]   A boundary value problem for a third-order equation of mixed type [J].
Sabitov, K. B. .
DOKLADY MATHEMATICS, 2009, 80 (01) :565-568
[7]  
Sabitov K. B., 2013, URAVNENIIA MATEMATIC
[8]  
Sobolev S. L., 1992, URAVNENIIA MATEMATIC
[9]  
Tikhonov A. N., 1963, INT SERIES MONOGRAPH, V39
[10]  
Tikhonov AN, 1977, SOLUTIONS ILL POSED