ORTHOSYMPLECTIC REPRESENTATIONS OF LIE-SUPERALGEBRAS

被引:1
作者
VANDERJEUGT, J
机构
关键词
D O I
10.1007/BF00402137
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
引用
收藏
页码:285 / 291
页数:7
相关论文
共 10 条
  • [1] SUPERGROUPS AND SUPERALGEBRAS IN PHYSICS
    BARS, I
    [J]. PHYSICA D, 1985, 15 (1-2): : 42 - 64
  • [2] Dynkin E., 1957, AM MATH SOC TRANSL 2, V6, P111
  • [3] Kac, 1975, FUNCT ANAL APPL, V9, P263
  • [4] LIE SUPER-ALGEBRAS
    KAC, VG
    [J]. ADVANCES IN MATHEMATICS, 1977, 26 (01) : 8 - 96
  • [5] KAC VG, 1978, SPRINGER LECTURE NOT, V676, P579
  • [6] MALCEV AI, 1950, AM MATH SOC TRANSL, P172
  • [7] INDEXES OF REPRESENTATIONS OF SIMPLE SUPERALGEBRAS
    MOREL, B
    PATERA, J
    SHARP, RT
    VANDERJEUGT, J
    [J]. JOURNAL OF MATHEMATICAL PHYSICS, 1987, 28 (08) : 1673 - 1682
  • [8] CLASSIFICATION OF ALL SIMPLE GRADED LIE-ALGEBRAS WHOSE LIE-ALGEBRA IS REDUCTIVE .1.
    SCHEUNERT, M
    NAHM, W
    RITTENBERG, V
    [J]. JOURNAL OF MATHEMATICAL PHYSICS, 1976, 17 (09) : 1626 - 1639
  • [9] CLASSIFICATION OF ALL SIMPLE GRADED LIE-ALGEBRAS WHOSE LIE-ALGEBRA IS REDUCTIVE .2. CONSTRUCTION OF EXCEPTIONAL ALGEBRAS
    SCHEUNERT, M
    NAHM, W
    RITTENBERG, V
    [J]. JOURNAL OF MATHEMATICAL PHYSICS, 1976, 17 (09) : 1640 - 1644
  • [10] SCHEUNERT M, 1979, SPRINGER LECTURE NOT, V716