NUMERICAL SIMULATIONS OF THE COMPLEX MODIFIED KORTEWEG-DE VRIES EQUATION

被引:18
|
作者
TAHA, TR
机构
[1] Computer Science department, The University of Georgia, Athens
关键词
D O I
10.1016/0378-4754(94)00031-X
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
In this paper implementations of three numerical schemes for the numerical simulation of the complex modified Korteweg-de Vries (CMKdV) equation are reported. The first is an integrable scheme derived by methods related to the Inverse Scattering Transform (IST). The second is derived from the first and is called the local IST scheme. The third is a standard finite difference scheme for the CMKdV equation. Travelling-wave solution as well as a double homoclinic orbit are used as initial conditions. Numerical experiments have shown that the standard scheme is subject to instability and the numerical solution becomes unbounded in finite time. In contrast the integrable IST scheme does not suffer from any instabilities. The main difference among the three schemes is in the discretization of the nonlinear term in the CMKdV equation. This demonstrates the importance of proper discretization of nonlinear terms when a numerical method is designed for solving a nonlinear differential equation.
引用
收藏
页码:461 / 467
页数:7
相关论文
共 50 条
  • [1] Numerical solution of the complex modified Korteweg-de Vries equation by DQM
    Bashan, Ali
    Ucar, Yusuf
    Yagmurlu, N. Murat
    Esen, Alaattin
    INTERNATIONAL CONFERENCE ON QUANTUM SCIENCE AND APPLICATIONS (ICQSA-2016), 2016, 766
  • [2] Numerical simulation of the modified Korteweg-de Vries equation
    Biswas, A.
    Raslan, K. R.
    PHYSICS OF WAVE PHENOMENA, 2011, 19 (02) : 142 - 147
  • [3] Numerical simulation of the modified Korteweg-de Vries equation
    A. Biswas
    K. R. Raslan
    Physics of Wave Phenomena, 2011, 19 : 142 - 147
  • [4] On the Modified Korteweg-De Vries Equation
    Hayashi, Nakao
    Naumkin, Pavel
    MATHEMATICAL PHYSICS ANALYSIS AND GEOMETRY, 2001, 4 (03) : 197 - 227
  • [5] Numerical solution of complex modified Korteweg-de Vries equation by collocation method
    Ismail, M. S.
    COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2009, 14 (03) : 749 - 759
  • [6] MODIFIED KORTEWEG-DE VRIES EQUATION
    ONO, H
    JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 1974, 37 (03) : 882 - 882
  • [7] Numerical inverse scattering for the Korteweg-de Vries and modified Korteweg-de Vries equations
    Trogdon, Thomas
    Olver, Sheehan
    Deconinck, Bernard
    PHYSICA D-NONLINEAR PHENOMENA, 2012, 241 (11) : 1003 - 1025
  • [8] Multisymplectic Schemes for the Complex Modified Korteweg-de Vries Equation
    Aydin, A.
    Karasoezen, B.
    NUMERICAL ANALYSIS AND APPLIED MATHEMATICS, 2008, 1048 : 60 - +
  • [9] Soliton surfaces for complex modified Korteweg-de Vries equation
    Bauyrzhan, Gulnur
    Yesmakhanova, Kuralay
    Yerzhanov, Koblandy
    Ybyraiymova, Sveta
    8TH INTERNATIONAL CONFERENCE ON MATHEMATICAL MODELING IN PHYSICAL SCIENCE, 2019, 1391
  • [10] STOCHASTIC MODIFIED KORTEWEG-DE VRIES EQUATION
    BLASZAK, M
    ACTA PHYSICA POLONICA A, 1986, 70 (05) : 503 - 515