WEAK SOLUTIONS OF HYPERBOLIC-PARABOLIC VOLTERRA-EQUATIONS

被引:8
作者
GRIPENBERG, G
机构
关键词
VOLTERRA EQUATION; WEAK SOLUTION; L-INFINITY-BOUND; VISCOELASTICITY; PARABOLIC; HYPERBOLIC;
D O I
10.2307/2154736
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The existence of a global weak solution, satisfying certain a priori L(infinity)-bounds, of the equation u(t)(t,x) = integral-t/0 k(t-s)(sigma(u(x)))x(s,x)ds + f(t,x) is established. The kernel k is locally integrable and log-convex, and sigma' has only one local minimum which is positive.
引用
收藏
页码:675 / 694
页数:20
相关论文
共 32 条
[1]  
BRANDON D., 1990, J INTEGRAL EQUAT, V2, P333, DOI DOI 10.1216/JIEA/1181075567
[2]  
Dafermos C. M., 1979, COMMUN PART DIFF EQ, V4, P219
[4]   SMOOTHING PROPERTIES OF LINEAR VOLTERRA INTEGRODIFFERENTIAL EQUATIONS [J].
DESCH, W ;
GRIMMER, R .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 1989, 20 (01) :116-132
[5]   WEAK SOLUTIONS OF A CLASS OF QUASI-LINEAR HYPERBOLIC INTEGRODIFFERENTIAL EQUATIONS DESCRIBING VISCOELASTIC MATERIALS [J].
ENGLER, H .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 1991, 113 (01) :1-38
[6]  
FUJITA Y, 1990, OSAKA J MATH, V27, P309
[7]  
FUJITA Y, 1990, OSAKA J MATH, V27, P797
[8]   GLOBAL EXISTENCE OF SOLUTIONS OF VOLTERRA INTEGRODIFFERENTIAL EQUATIONS OF PARABOLIC TYPE [J].
GRIPENBERG, G .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1993, 102 (02) :382-390
[9]  
GRIPENBERG G, 1985, J DIFFER EQUATIONS, V60, P57, DOI 10.1016/0022-0396(85)90120-2